Derivation of the Time Dependent Gross–Pitaevskii Equation in Two Dimensions

被引:0
|
作者
Maximilian Jeblick
Nikolai Leopold
Peter Pickl
机构
[1] Ludwig-Maximilians-Universität München,Mathematisches Institut
[2] Institute of Science and Technology Austria (IST Austria),undefined
[3] Duke Kunshan University,undefined
[4] Ludwig-Maximilians-Universität München,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting from an interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N-1+2βW(Nβx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)$$\end{document}, for any β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document}, or to be given by VN(x)=e2NV(eNx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_N(x)=e^{2N} V(e^N x)$$\end{document}, for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W,V \in L^\infty ({\mathbb {R}}^2,{\mathbb {R}})$$\end{document}. In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_N$$\end{document} we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
引用
收藏
页码:1 / 69
页数:68
相关论文
共 50 条