Eigenvalues of Euclidean wedge domains in higher dimensions

被引:0
|
作者
Jesse Ratzkin
机构
[1] University of Cape Town,
关键词
35P15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we use a weighted isoperimetric inequality to give a lower bound for the first Dirichlet eigenvalue of the Laplacian on a bounded domain inside a Euclidean cone. Our bound is sharp, in that only sectors realize it. This result generalizes a lower bound of Payne and Weinberger in two dimensions.
引用
收藏
页码:93 / 106
页数:13
相关论文
共 50 条
  • [41] Euclidean domains in complex manifolds
    Forstneric, F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [42] ON NODAL DOMAINS IN EUCLIDEAN BALLS
    Helffer, Bernard
    Sundqvist, Mikael Persson
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4777 - 4791
  • [43] Euclidean Spanners in High Dimensions
    Har-Peled, Sariel
    Indyk, Piotr
    Sidiropoulos, Anastasios
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 804 - 809
  • [44] ON FREDHOLM EIGENVALUES OF PLANE DOMAINS
    SCHOBER, G
    JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 16 (06): : 535 - &
  • [45] Euclidean supergravity in five dimensions
    Sabra, Wafic A.
    Vaughan, Owen
    PHYSICS LETTERS B, 2016, 760 : 14 - 18
  • [46] Robin eigenvalues on domains with peaks
    Kovarik, Hynek
    Pankrashkin, Konstantin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1600 - 1630
  • [47] On the optimization of higher eigenvalues
    Egorov, YV
    COMPTES RENDUS MECANIQUE, 2004, 332 (08): : 673 - 678
  • [48] EIGENVALUES OF THE LAPLACIAN IN 2 DIMENSIONS
    KUTTLER, JR
    SIGILLITO, VG
    SIAM REVIEW, 1984, 26 (02) : 163 - 193
  • [49] Higher eigenvalues of graphs
    Kelner, Jonathan A.
    Lee, James R.
    Price, Gregory N.
    Teng, Shang-Hua
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 735 - 744
  • [50] Sampling in Euclidean and Non-Euclidean Domains: A Unified Approach
    Casey, Stephen D.
    Christensen, Jens Gerlach
    SAMPLING THEORY, A RENAISSANCE: COMPRESSIVE SENSING AND OTHER DEVELOPMENTS, 2015, : 331 - 359