Eigenvalues of Euclidean wedge domains in higher dimensions

被引:0
|
作者
Jesse Ratzkin
机构
[1] University of Cape Town,
关键词
35P15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we use a weighted isoperimetric inequality to give a lower bound for the first Dirichlet eigenvalue of the Laplacian on a bounded domain inside a Euclidean cone. Our bound is sharp, in that only sectors realize it. This result generalizes a lower bound of Payne and Weinberger in two dimensions.
引用
收藏
页码:93 / 106
页数:13
相关论文
共 50 条
  • [31] STUDY OF CLASSICAL AND QUANTUM PHASE TRANSITIONS ON NON-EUCLIDEAN GEOMETRIES IN HIGHER DIMENSIONS
    Daniska, Michal
    Gendiar, Andrej
    ACTA PHYSICA SLOVACA, 2018, 68 (3-4) : 187 - +
  • [32] Formalizing Factorization on Euclidean Domains and Abstract Euclidean Algorithms
    de Lima, Thaynara Arielly
    Avelar, Andreia
    Galdino, Andre Luiz
    Ayala-Rincon, Mauricio
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (402):
  • [33] DIMENSIONS AND DOMAINS OF ORGANIZATIONAL-EFFECTIVENESS IN AUSTRALIAN HIGHER-EDUCATION
    LYSONS, A
    HIGHER EDUCATION, 1990, 20 (03) : 287 - 300
  • [34] RECURSIVE PROPERTIES OF EUCLIDEAN DOMAINS
    SCHRIEBER, L
    ANNALS OF PURE AND APPLIED LOGIC, 1985, 29 (01) : 59 - 77
  • [35] A NOTE ON QUADRATIC EUCLIDEAN DOMAINS
    ARPAIA, PJ
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (08): : 864 - &
  • [36] On perturbation bounds of eigenvalues in Euclidean Jordan Algebras
    Seltzer, Kevin
    Tao, J.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1379 - 1389
  • [37] On principal eigenvalues for indefinite problems in euclidean space
    Rozenblum, G
    Solomyak, M
    MATHEMATISCHE NACHRICHTEN, 1998, 192 : 205 - 223
  • [38] HOLES AND MAPS OF EUCLIDEAN DOMAINS
    Vaisala, Jussi
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 58 - 66
  • [39] Euclidean domains with no multiplicative norms
    Dastrup, Caleb J.
    Nielsen, Pace P.
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [40] Oka Domains in Euclidean Spaces
    Forstneric, Franc
    Wold, Erlend Fornaess
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (03) : 1801 - 1824