Total perfect codes in Cayley graphs

被引:0
|
作者
Sanming Zhou
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
关键词
Perfect code; Total perfect code; Efficient dominating set; Efficient open dominating set; Total perfect dominating set; Cayley graph; 05C25; 05C69; 94B99;
D O I
暂无
中图分类号
学科分类号
摘要
A total perfect code in a graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a subset C of V(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\Gamma )$$\end{document} such that every vertex of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is adjacent to exactly one vertex in C. We give necessary and sufficient conditions for a conjugation-closed subset of a group to be a total perfect code in a Cayley graph of the group. As an application we show that a Cayley graph on an elementary abelian 2-group admits a total perfect code if and only if its degree is a power of 2. We also obtain necessary conditions for a Cayley graph of a group with connection set closed under conjugation to admit a total perfect code.
引用
收藏
页码:489 / 504
页数:15
相关论文
共 50 条
  • [1] Total perfect codes in Cayley graphs
    Zhou, Sanming
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (03) : 489 - 504
  • [2] Subgroup total perfect codes in Cayley sum graphs
    Wang, Xiaomeng
    Wei, Lina
    Xu, Shou-Jun
    Zhou, Sanming
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (09) : 2599 - 2613
  • [3] PERFECT CODES IN CAYLEY GRAPHS
    Huang, He
    Xia, Binzhou
    Zhou, Sanming
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 548 - 559
  • [4] Subgroup perfect codes in cayley graphs
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    arXiv, 2019,
  • [5] On the subgroup perfect codes in Cayley graphs
    Yasamin Khaefi
    Zeinab Akhlaghi
    Behrooz Khosravi
    Designs, Codes and Cryptography, 2023, 91 : 55 - 61
  • [6] On subgroup perfect codes in Cayley graphs
    Zhang, Junyang
    Zhou, Sanming
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 91
  • [7] Perfect codes in Cayley sum graphs
    Ma, Xuanlong
    Wang, Kaishun
    Yang, Yuefeng
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [8] On the subgroup perfect codes in Cayley graphs
    Khaefi, Yasamin
    Akhlaghi, Zeinab
    Khosravi, Behrooz
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 55 - 61
  • [9] SUBGROUP PERFECT CODES IN CAYLEY GRAPHS
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1909 - 1921
  • [10] Characterization of subgroup perfect codes in Cayley graphs
    Chen, Jiyong
    Wang, Yanpeng
    Xia, Binzhou
    DISCRETE MATHEMATICS, 2020, 343 (05)