Perfect code;
Total perfect code;
Efficient dominating set;
Efficient open dominating set;
Total perfect dominating set;
Cayley graph;
05C25;
05C69;
94B99;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A total perfect code in a graph Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} is a subset C of V(Γ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V(\Gamma )$$\end{document} such that every vertex of Γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma $$\end{document} is adjacent to exactly one vertex in C. We give necessary and sufficient conditions for a conjugation-closed subset of a group to be a total perfect code in a Cayley graph of the group. As an application we show that a Cayley graph on an elementary abelian 2-group admits a total perfect code if and only if its degree is a power of 2. We also obtain necessary conditions for a Cayley graph of a group with connection set closed under conjugation to admit a total perfect code.
机构:
Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China
Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R ChinaAnhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China
Tan, Ying-Ying
Feng, Keqin
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaAnhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China
Feng, Keqin
Cao, Xiwang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Sch Math Sci, Nanjing 210016, Jiangsu, Peoples R ChinaAnhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Anhui, Peoples R China