On Certain Sums of Arithmetic Functions Involving the GCD and LCM of Two Positive Integers

被引:0
|
作者
Randell Heyman
László Tóth
机构
[1] University of New South Wales,School of Mathematics and Statistics
[2] University of Pécs,Department of Mathematics
来源
Results in Mathematics | 2021年 / 76卷
关键词
Arithmetic function; greatest common divisor; least common multiple; hyperbolic summation; asymptotic formula; 11A05; 11A25; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain asymptotic formulas with remainder terms for the hyperbolic summations ∑mn≤xf((m,n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{mn\le x} f((m,n))$$\end{document} and ∑mn≤xf([m,n])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{mn\le x} f([m,n])$$\end{document}, where f belongs to certain classes of arithmetic functions, (m, n) and [m, n] denoting the gcd and lcm of the integers m, n. In particular, we investigate the functions f(n)=τ(n),logn,ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(n)=\tau (n), \log n, \omega (n)$$\end{document} and Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. We also define a common generalization of the latter three functions, and prove a corresponding result.
引用
收藏
相关论文
共 49 条
  • [21] Elementary evaluation of certain convolution sums involving divisor functions
    Huard, JG
    Ou, ZMM
    Spearman, BK
    Williams, KS
    NUMBER THEORY FOR THE MILLENNIUM II, 2002, : 229 - 274
  • [22] On a sum involving certain arithmetic functions and the integral part function
    Jing Ma
    Huayan Sun
    The Ramanujan Journal, 2023, 60 : 1025 - 1032
  • [23] On a sum involving certain arithmetic functions and the integral part function
    Ma, Jing
    Sun, Huayan
    RAMANUJAN JOURNAL, 2023, 60 (04): : 1025 - 1032
  • [24] Asymptotic formulas for generalized gcd-sum and lcm-sum functions over r-regular integers (mod nr)
    Bu, Zhengjin
    Xu, Zhefeng
    AIMS MATHEMATICS, 2021, 6 (12): : 13157 - 13169
  • [25] CERTAIN COMBINATORIAL CONVOLUTION SUMS INVOLVING DIVISOR FUNCTIONS PRODUCT FORMULA
    Kim, Daeyeoul
    Park, Yoon Kyung
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (03): : 973 - 988
  • [26] Alternative expressions for the Riemann zeta and related functions at positive even integers and infinite sums involving zeros of Bessel and spherical Bessel functions of the first kind
    Jog, C. S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 451 - 462
  • [27] New identities involving certain Hardy sums and two-term exponential sums
    Dagli, Muhammet Cihat
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 841 - 847
  • [28] Notes on Certain Arithmetic Inequalities Involving Two Consecutive Primes
    Djamel, Bellaouar
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 (03): : 253 - 268
  • [29] New identities involving certain Hardy sums and two-term exponential sums
    Muhammet Cihat Dağlı
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 841 - 847
  • [30] Nonclassical Study on certain Diophantine Inequalities involving Multiplicative Arithmetic Functions
    Boudaoud, Said
    Bellaouar, Djamel
    Boudaoud, Abdelmadjid
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 17 - 39