We obtain asymptotic formulas with remainder terms for the hyperbolic summations ∑mn≤xf((m,n))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum _{mn\le x} f((m,n))$$\end{document} and ∑mn≤xf([m,n])\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum _{mn\le x} f([m,n])$$\end{document}, where f belongs to certain classes of arithmetic functions, (m, n) and [m, n] denoting the gcd and lcm of the integers m, n. In particular, we investigate the functions f(n)=τ(n),logn,ω(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(n)=\tau (n), \log n, \omega (n)$$\end{document} and Ω(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega (n)$$\end{document}. We also define a common generalization of the latter three functions, and prove a corresponding result.