On Certain Sums of Arithmetic Functions Involving the GCD and LCM of Two Positive Integers

被引:0
|
作者
Randell Heyman
László Tóth
机构
[1] University of New South Wales,School of Mathematics and Statistics
[2] University of Pécs,Department of Mathematics
来源
Results in Mathematics | 2021年 / 76卷
关键词
Arithmetic function; greatest common divisor; least common multiple; hyperbolic summation; asymptotic formula; 11A05; 11A25; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain asymptotic formulas with remainder terms for the hyperbolic summations ∑mn≤xf((m,n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{mn\le x} f((m,n))$$\end{document} and ∑mn≤xf([m,n])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{mn\le x} f([m,n])$$\end{document}, where f belongs to certain classes of arithmetic functions, (m, n) and [m, n] denoting the gcd and lcm of the integers m, n. In particular, we investigate the functions f(n)=τ(n),logn,ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(n)=\tau (n), \log n, \omega (n)$$\end{document} and Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. We also define a common generalization of the latter three functions, and prove a corresponding result.
引用
收藏
相关论文
共 49 条