Relativistic model of anisotropic charged fluid sphere in general relativity

被引:0
|
作者
Neeraj Pant
N. Pradhan
Rajeev K. Bansal
机构
[1] National Defence Academy,Mathematics Department
[2] National Defence Academy,Physics Department
来源
关键词
General relativity; Exact solution; Curvature coordinates; Anisotropic fluid sphere; Einstein-Maxwell; Reissner-Nordstrom;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E$\end{document} and pressure anisotropy factor Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta$\end{document} which involve parameters K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} (charge) and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353–359, 2010). Our solution is well behaved in all respects for all values of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document} lying in the range 0<X≤0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< X \leq 0.18$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} lying in the range 0≤α≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \leq \alpha \leq6.6$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} lying in the range 0<K≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< K \leq 6.6$\end{document} and Schwarzschild compactness parameter “u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document}” lying in the range 0<u≤0.38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< u \leq 0.38$\end{document}. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=0.088$\end{document}, α=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha=0.6$\end{document} and K=4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K=4.3$\end{document} for which u=0.2054\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u=0.2054$\end{document} and by assuming surface density ρb=4.6888×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 4.6888 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius are found to be 1.51MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.51~M_{\varTheta}$\end{document} and 10.90 km respectively. Assuming surface density ρb=2×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 2 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius for a neutron star candidate are found to be 2.313MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.313~M_{\varTheta}$\end{document} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.
引用
收藏
相关论文
共 50 条
  • [41] Static charged spheres with anisotropic pressure in general relativity
    Rao, JK
    Annapurna, M
    Trivedi, MM
    PRAMANA-JOURNAL OF PHYSICS, 2000, 54 (02): : 215 - 225
  • [42] ORTHONORMAL TETRADS AND CHARGED FLUID IN GENERAL RELATIVITY
    ASGEKAR, GG
    DATE, TH
    GENERAL RELATIVITY AND GRAVITATION, 1978, 9 (02) : 175 - 181
  • [43] Charged Static Fluid Spheres in General Relativity
    Saibal Ray
    Basanti Das
    Astrophysics and Space Science, 2002, 282 : 635 - 644
  • [44] SOME DISTRIBUTIONS OF CHARGED FLUID IN GENERAL RELATIVITY
    DE, UK
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 1971, 45 (11): : 487 - &
  • [45] AN EXACT MODEL OF AN ANISOTROPIC RELATIVISTIC SPHERE
    PATEL, LK
    MEHTA, NP
    AUSTRALIAN JOURNAL OF PHYSICS, 1995, 48 (04): : 635 - 643
  • [46] Anisotropic geodesic fluid spheres in general relativity
    Herrera, L
    Martin, J
    Ospino, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) : 4889 - 4897
  • [47] ANISOTROPIC FLUID SPHERES IN GENERAL-RELATIVITY
    BAYIN, SS
    PHYSICAL REVIEW D, 1982, 26 (06): : 1262 - 1274
  • [48] Relativistic charged stellar modeling with a perfect fluid sphere
    Joaquin Estevez-Delgado
    Joel Arturo Rodríguez Ceballos
    Jorge Mauricio Paulin-Fuentes
    José Vega Cabrera
    Antonio Rendón Romero
    Communications in Theoretical Physics, 2023, 75 (09) : 115 - 123
  • [49] Relativistic charged stellar modeling with a perfect fluid sphere
    Estevez-Delgado, Joaquin
    Ceballos, Joel Arturo Rodriguez
    Paulin-Fuentes, Jorge Mauricio
    Cabrera, Jose Vega
    Romero, Antonio Rendon
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (09)