Relativistic model of anisotropic charged fluid sphere in general relativity

被引:0
|
作者
Neeraj Pant
N. Pradhan
Rajeev K. Bansal
机构
[1] National Defence Academy,Mathematics Department
[2] National Defence Academy,Physics Department
来源
关键词
General relativity; Exact solution; Curvature coordinates; Anisotropic fluid sphere; Einstein-Maxwell; Reissner-Nordstrom;
D O I
暂无
中图分类号
学科分类号
摘要
In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E$\end{document} and pressure anisotropy factor Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta$\end{document} which involve parameters K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} (charge) and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353–359, 2010). Our solution is well behaved in all respects for all values of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document} lying in the range 0<X≤0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< X \leq 0.18$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} lying in the range 0≤α≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0 \leq \alpha \leq6.6$\end{document}, K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K$\end{document} lying in the range 0<K≤6.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< K \leq 6.6$\end{document} and Schwarzschild compactness parameter “u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document}” lying in the range 0<u≤0.38\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< u \leq 0.38$\end{document}. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X=0.088$\end{document}, α=0.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha=0.6$\end{document} and K=4.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K=4.3$\end{document} for which u=0.2054\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u=0.2054$\end{document} and by assuming surface density ρb=4.6888×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 4.6888 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius are found to be 1.51MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.51~M_{\varTheta}$\end{document} and 10.90 km respectively. Assuming surface density ρb=2×1014g/cm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho_{b} = 2 \times 10^{14}~\mbox{g/cm}^{3}$\end{document} the mass and radius for a neutron star candidate are found to be 2.313MΘ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.313~M_{\varTheta}$\end{document} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.
引用
收藏
相关论文
共 50 条
  • [31] A new solution of embedding class I representing anisotropic fluid sphere in general relativity
    Singh, Ksh. Newton
    Bhar, Piyali
    Pant, Neeraj
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (14):
  • [32] AN INTERIOR SOLUTION FOR A CHARGED SPHERE IN GENERAL-RELATIVITY
    MEHRA, AL
    PHYSICS LETTERS A, 1982, 88 (04) : 159 - 161
  • [33] General relativistic model for mixed fluid sphere with equation of state
    F. C. Ragel
    S. Thirukkanesh
    The European Physical Journal C, 2019, 79
  • [34] General relativistic model for mixed fluid sphere with equation of state
    Ragel, F. C.
    Thirukkanesh, S.
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (04):
  • [35] EXTERIOR SOLUTION FOR A CHARGED RADIATING SPHERE IN GENERAL RELATIVITY
    KRORI, KD
    BARUA, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1974, 7 (17): : 2125 - 2129
  • [36] EXACT SOLUTION OF A STATIC CHARGED SPHERE IN GENERAL RELATIVITY
    WILSON, SJ
    CANADIAN JOURNAL OF PHYSICS, 1969, 47 (21) : 2401 - &
  • [37] Charged static fluid spheres in general relativity
    Ray, S
    Das, B
    ASTROPHYSICS AND SPACE SCIENCE, 2002, 282 (04) : 635 - 644
  • [38] NONSTATIC CHARGED FLUID SPHERES IN GENERAL RELATIVITY
    CHAKRAVARTY, N
    CHATTERJEE, S
    ACTA PHYSICA POLONICA B, 1978, 9 (09): : 777 - 785
  • [39] Modeling of charged anisotropic compact stars in general relativity
    Baiju Dayanandan
    S. K. Maurya
    Smitha T. T
    The European Physical Journal A, 2017, 53
  • [40] Modeling of charged anisotropic compact stars in general relativity
    Dayanandan, Baiju
    Maurya, S. K.
    Smitha, T. T.
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (06):