A note on homogeneous locally symmetric spaces

被引:0
|
作者
G. Fels
机构
[1] Universität-GHS Essen,
关键词
Symmetric Space; Topological Group;
D O I
10.1007/BF01234660
中图分类号
学科分类号
摘要
Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(g,\theta )$$ \end{document} denote an orthogonal symmetric Lie algbra and let (G, K) be an associated pair, i.e., Lie(G =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g$$ \end{document} and Lie(K°) =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g^\theta $$ \end{document}. In this paper we prove that the homogeneous spaceG/K has a structure of a globally symmetric space for every choice ofG andK, especially forG being compact.
引用
收藏
页码:269 / 277
页数:8
相关论文
共 50 条