On homogeneous geodesics and weakly symmetric spaces

被引:6
|
作者
Berestovskii, Valerii Nikolaevich [1 ,2 ]
Nikonorov, Yurii Gennadievich [3 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Mech Math Dept, Pirogov Str 1, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Southern Math Inst, Vladikavkaz Sci Ctr, Markus Str 22, Vladikavkaz 362027, Russia
关键词
Geodesic orbit Riemannian space; Homogeneous Riemannian manifold; Homogeneous space; Quadratic mapping; Totally geodesic torus; Weakly symmetric space;
D O I
10.1007/s10455-018-9641-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a sufficient condition for a geodesic in a Riemannian manifold to be homogeneous, i.e. an orbit of an 1-parameter isometry group. As an application of this result, we provide a new proof of the fact that every weakly symmetric space is a geodesic orbit manifold, i.e. all its geodesics are homogeneous. We also study general properties of homogeneous geodesics, in particular, the structure of the closure of a given homogeneous geodesic. We present several examples where this closure is a torus of dimension 2 which is (respectively, is not) totally geodesic in the ambient manifold. Finally, we discuss homogeneous geodesics in Lie groups supplied with left-invariant Riemannian metrics.
引用
收藏
页码:575 / 589
页数:15
相关论文
共 50 条
  • [1] On homogeneous geodesics and weakly symmetric spaces
    Valeriĭ Nikolaevich Berestovskiĭ
    Yuriĭ Gennadievich Nikonorov
    Annals of Global Analysis and Geometry, 2019, 55 : 575 - 589
  • [2] Geodesics in weakly symmetric spaces
    Berndt, J
    Kowalski, O
    Vanhecke, L
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (02) : 153 - 156
  • [3] Geodesics in Weakly Symmetric Spaces
    Jürgen Berndt
    Oldřich Kowalski
    Lieven Vanhecke
    Annals of Global Analysis and Geometry, 1997, 15 : 153 - 156
  • [4] Homogeneous geodesics in homogeneous Finsler spaces
    Latifi, Dariush
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) : 1421 - 1433
  • [5] CLOSED GEODESICS ON HOMOGENEOUS SPACES
    ZILLER, W
    MATHEMATISCHE ZEITSCHRIFT, 1976, 152 (01) : 67 - 88
  • [6] GEODESICS OF CERTAIN SYMMETRIC SPACES
    SEBESTYEN, A
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1971, 30 (03): : 305 - +
  • [7] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    Hosseini, M.
    Moghaddam, Hamid Reza Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 457 - 469
  • [8] EXISTENCE OF HOMOGENEOUS GEODESICS ON HOMOGENEOUS RANDERS SPACES
    Yan, Zaili
    Deng, Shaoqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 481 - 493
  • [9] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    M. Hosseini
    Hamid Reza Salimi Moghaddam
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 457 - 469
  • [10] Homogeneous geodesics of four-dimensional generalized symmetric pseudo-Riemannian spaces
    De Leo, Barbara
    Marinosci, Rosa Anna
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 73 (3-4): : 341 - 360