On homogeneous geodesics and weakly symmetric spaces

被引:6
|
作者
Berestovskii, Valerii Nikolaevich [1 ,2 ]
Nikonorov, Yurii Gennadievich [3 ]
机构
[1] Russian Acad Sci, Siberian Branch, Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Mech Math Dept, Pirogov Str 1, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Southern Math Inst, Vladikavkaz Sci Ctr, Markus Str 22, Vladikavkaz 362027, Russia
关键词
Geodesic orbit Riemannian space; Homogeneous Riemannian manifold; Homogeneous space; Quadratic mapping; Totally geodesic torus; Weakly symmetric space;
D O I
10.1007/s10455-018-9641-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a sufficient condition for a geodesic in a Riemannian manifold to be homogeneous, i.e. an orbit of an 1-parameter isometry group. As an application of this result, we provide a new proof of the fact that every weakly symmetric space is a geodesic orbit manifold, i.e. all its geodesics are homogeneous. We also study general properties of homogeneous geodesics, in particular, the structure of the closure of a given homogeneous geodesic. We present several examples where this closure is a torus of dimension 2 which is (respectively, is not) totally geodesic in the ambient manifold. Finally, we discuss homogeneous geodesics in Lie groups supplied with left-invariant Riemannian metrics.
引用
收藏
页码:575 / 589
页数:15
相关论文
共 50 条
  • [21] Counting geodesics on compact symmetric spaces
    Lucas Seco
    Mauro Patrão
    Monatshefte für Mathematik, 2024, 204 : 281 - 310
  • [22] ON SOME SPACES OF MINIMAL GEODESICS IN RIEMANNIAN SYMMETRIC SPACES
    Mare, Augustin-Liviu
    Quast, Peter
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (03): : 681 - 694
  • [23] Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension
    Zaili Yan
    Monatshefte für Mathematik, 2017, 182 : 165 - 171
  • [24] HOMOGENEOUS RANDERS SPACES ADMITTING JUST TWO HOMOGENEOUS GEODESICS
    Dusek, Zdenek
    ARCHIVUM MATHEMATICUM, 2019, 55 (05): : 281 - 288
  • [25] Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension
    Yan, Zaili
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 165 - 171
  • [26] Riemannian M-spaces with homogeneous geodesics
    Arvanitoyeorgos, Andreas
    Wang, Yu
    Zhao, Guosong
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) : 315 - 328
  • [27] Riemannian M-spaces with homogeneous geodesics
    Andreas Arvanitoyeorgos
    Yu Wang
    Guosong Zhao
    Annals of Global Analysis and Geometry, 2018, 54 : 315 - 328
  • [28] Weakly complex homogeneous spaces
    Moroianu, Andrei
    Semmelmann, Uwe
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 691 : 229 - 244
  • [29] On weakly commutative homogeneous spaces
    Yakimova, OS
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (03) : 615 - 616