Convergence of Generalized SOR, Jacobi and Gauss–Seidel Methods for Linear Systems

被引:0
|
作者
Saha M. [1 ]
Chakravarty J. [1 ]
机构
[1] Department of Mathematics, NIT Meghalaya, Shillong
关键词
Convergence; Gauss–Seidel; Iterative method; Jacobi; SOR;
D O I
10.1007/s40819-020-00830-5
中图分类号
学科分类号
摘要
In this paper, we study the convergence of generalized Jacobi and generalized Gauss–Seidel methods for solving linear systems with symmetric positive definite matrix, L-matrix and H-matrix as co-efficient matrix. A generalization of successive overrelaxation (SOR) method for solving linear systems is proposed and convergence of the proposed method is presented for linear systems with strictly diagonally dominant matrices, symmetric positive definite matrices, M-matrices, L-matrices and for H-matrices. Finally, numerical experiments are carried out to establish the advantages of generalized SOR method over generalized Jacobi, generalized Gauss–Seidel, and SOR methods. © 2020, Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [41] Convergence of the Gauss-Seidel iterative method
    Jiang, Youyi
    Zou, Limin
    CEIS 2011, 2011, 15
  • [42] JACOBI, GAUSS-SEIDEL METHODS, BLOCK SUBRELAXATION AND BLOCK SUPERRELAXATION, APPLIED TO NONLINEAR PROBLEMS
    MIELLOU, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (25): : 1257 - &
  • [43] Comparison Of Jacobi Iteration Method And Gauss-Seidel Iteration Method In Solving Fuzzy Linear Equation Systems Using A Computer
    Dihoum, Basma Emhamed
    Abu Flijah, Lutfia Almukhtar
    Al-Qiblawi, Siham Saleh
    Owen, Somaya Ali
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 711 - 722
  • [44] The preconditioned Gauss-Seidel method faster than the SOR method
    Niki, Hiroshi
    Kohno, Toshiyuki
    Morimoto, Munenori
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (01) : 59 - 71
  • [45] A Parallel Iterative hybrid Gauss-Jacobi-Seidel method
    Menezes, Matheus da Silva
    Silva, Paulo Henrique Lopes
    de Oliveira, Joao Paulo Carau
    Marques, Raimundo Leandro Andrade
    Mezzomo, Ivan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 468
  • [46] A note on the preconditioned Gauss-Seidel (GS) method for linear systems
    Kohno, Toshiyuki
    Niki, Hiroshi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2413 - 2421
  • [47] A note on the preconditioned Gauss-Seidel (GS) method for linear systems
    Li, W
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 81 - 90
  • [48] A Parallel Jacobi-Embedded Gauss-Seidel Method
    Ahmadi, Afshin
    Manganiello, Felice
    Khademi, Amin
    Smith, Melissa C.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (06) : 1452 - 1464
  • [49] 弱对角占优矩阵的Jacobi和Gauss-Seidel及SOR迭代法收敛准则
    陈恒新
    华侨大学学报(自然科学版), 1989, (03) : 229 - 238
  • [50] Block SOR methods for fuzzy linear systems
    Miao S.-X.
    Zheng B.
    Wang K.
    J. Appl. Math. Comp., 2008, 1-2 (201-218): : 201 - 218