A note on the preconditioned Gauss-Seidel (GS) method for linear systems

被引:23
|
作者
Li, W [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
preconditioner; iteration; linear system;
D O I
10.1016/j.cam.2004.11.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note recent comparison results for preconditioned Gauss-Seidel (GS) methods are discussed. A new strict comparison result between two different preconditioned GS methods is given, some errors in a recent article by Niki et al. (J. Comput. Appl. Math. 164-165 (2004) 587) are pointed out and a new proof for the corresponding results in Niki et al. is presented. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [1] A note on the preconditioned Gauss-Seidel (GS) method for linear systems
    Kohno, Toshiyuki
    Niki, Hiroshi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2413 - 2421
  • [2] Preconditioned Gauss-Seidel iterative method for linear systems
    He Honghao
    Yuan Dongjin
    Hou Yi
    Xu Jinqiu
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 1, PROCEEDINGS, 2009, : 382 - 385
  • [3] A new preconditioned Gauss-Seidel method for linear systems
    Pu, Bing-Yuan
    Wen, Chun
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (02): : 65 - 72
  • [4] Preconditioned Gauss-Seidel type iterative method for solving linear systems
    Guang-hui Cheng
    Ting-zhu Huang
    Xiao-yu Cheng
    Applied Mathematics and Mechanics, 2006, 27 : 1275 - 1279
  • [5] Preconditioned Gauss-Seidel type iterative method for solving linear systems
    Cheng Guang-hui
    Huang Ting-zhu
    Cheng Xiao-yu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (09) : 1275 - 1279
  • [6] PRECONDITIONED GAUSS-SEIDEL TYPE ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS
    程光辉
    黄廷祝
    成孝予
    Applied Mathematics and Mechanics(English Edition), 2006, (09) : 1275 - 1279
  • [7] Backward Gauss-Seidel iteration for preconditioned linear systems
    Wang, Zhuan-De
    Huang, Ting-Zhu
    Yang, Wei
    Advances in Matrix Theory and Applications, 2006, : 426 - 428
  • [8] PRECONDITIONED GAUSS-SEIDEL ITERATIVE METHOD FOR Z-MATRICES LINEAR SYSTEMS
    Shen, Hailong
    Shao, Xinhui
    Huang, Zhenxing
    Li, Chunji
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (02) : 303 - 314
  • [9] On the improved Gauss-Seidel method for linear systems
    Liu, Qingbing
    CISST'09: PROCEEDINGS OF THE 3RD WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, SIGNAL AND TELECOMMUNICATIONS, 2009, : 105 - 109
  • [10] ADAPTIVE GAUSS-SEIDEL METHOD FOR LINEAR-SYSTEMS
    USUI, M
    NIKI, H
    KOHNO, T
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 51 (1-2) : 119 - 125