Nonlinear integrals and Hadamard-type inequalities

被引:0
|
作者
Sadegh Abbaszadeh
Ali Ebadian
机构
[1] Payame Noor University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Pseudo-operation; -integral; Hadamard inequality; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
The Hadamard integral inequality for nonlinear integrals has been proved by some researchers, but the obtained inequalities do not look like the classical Hadamard inequality. In this paper, we provide a refinement of the Hadamard integral inequality for g-integrals as ∫[0,1]⊕f((1-t)a+tb)⊙dm⩽g-112⊙(f(a)⊕f(b)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{[0,1]}^{\oplus } f\big ((1- t)a+ tb\big ) \odot \mathrm {d}m \leqslant g^{-1}\left( \frac{1}{2}\right) \odot \big (f(a)\oplus f(b)\big ), \end{aligned}$$\end{document}for which by choosing the convex and increasing function g(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)= x$$\end{document}, we get the classical Hadamard inequality. Consequently, we establish some novel integral inequalities, the Hadamard-type integral inequalities for a pseudo-multiplication of n convex (concave) functions, in the framework of g-integrals.
引用
收藏
页码:2843 / 2849
页数:6
相关论文
共 50 条
  • [41] Fisher- and Hadamard-type inequalities for accretive-dissipative matrices
    Ikramov, Kh.D.
    Chugunov, V.N.
    Doklady Akademii Nauk, 2002, 384 (05) : 585 - 587
  • [42] On Hadamard-Type Integral Inequalities for Co-ordinated Convex Functions
    Aslan, Sinan
    Akdemir, Ahmet Ocak
    Cinar, Yasin
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [43] A Hadamard-type inequality for fuzzy integrals based on r-convex functions
    Sadegh Abbaszadeh
    Madjid Eshaghi
    Soft Computing, 2016, 20 : 3117 - 3124
  • [44] Hermite-Hadamard-type inequalities for conformable integrals
    Bohner, Martin
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Napoles Valdes, Juan E.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03): : 775 - 786
  • [45] Hermite–Hadamard type inequalities for conformable fractional integrals
    M. Adil Khan
    T. Ali
    S. S. Dragomir
    M. Z. Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1033 - 1048
  • [46] Error bounds for compound quadratures for Hadamard-type finite-part integrals
    Diethelm, K
    NUMERICAL METHODS AND ERROR BOUNDS, 1996, 89 : 58 - 63
  • [47] Some Hadamard-Type Integral Inequalities Involving Modified Harmonic Exponential Type Convexity
    Shaikh, Asif Ali
    Hincal, Evren
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Tariq, Muhammad
    AXIOMS, 2023, 12 (05)
  • [48] A Hadamard-type inequality for fuzzy integrals based on r-convex functions
    Abbaszadeh, Sadegh
    Eshaghi, Madjid
    SOFT COMPUTING, 2016, 20 (08) : 3117 - 3124
  • [49] Support-type properties of convex functions of higher order and Hadamard-type inequalities
    Wasowicz, Szymon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 1229 - 1241
  • [50] Hermite–Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    Mehmet Zeki Sarikaya
    Journal of Inequalities and Applications, 2020