Nonlinear integrals and Hadamard-type inequalities

被引:0
|
作者
Sadegh Abbaszadeh
Ali Ebadian
机构
[1] Payame Noor University,Department of Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
Pseudo-operation; -integral; Hadamard inequality; Convex function;
D O I
暂无
中图分类号
学科分类号
摘要
The Hadamard integral inequality for nonlinear integrals has been proved by some researchers, but the obtained inequalities do not look like the classical Hadamard inequality. In this paper, we provide a refinement of the Hadamard integral inequality for g-integrals as ∫[0,1]⊕f((1-t)a+tb)⊙dm⩽g-112⊙(f(a)⊕f(b)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{[0,1]}^{\oplus } f\big ((1- t)a+ tb\big ) \odot \mathrm {d}m \leqslant g^{-1}\left( \frac{1}{2}\right) \odot \big (f(a)\oplus f(b)\big ), \end{aligned}$$\end{document}for which by choosing the convex and increasing function g(x)=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x)= x$$\end{document}, we get the classical Hadamard inequality. Consequently, we establish some novel integral inequalities, the Hadamard-type integral inequalities for a pseudo-multiplication of n convex (concave) functions, in the framework of g-integrals.
引用
收藏
页码:2843 / 2849
页数:6
相关论文
共 50 条
  • [21] Fractional calculus in the Mellin setting and Hadamard-type fractional integrals
    Butzer, PL
    Kilbas, AA
    Trujillo, JJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) : 1 - 27
  • [22] Hadamard-type and Bullen-type inequalities for Lipschitzian functions and their applications
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Hsu, Kai-Chen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) : 651 - 660
  • [23] Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals
    Nidhi Sharma
    Sanjeev Kumar Singh
    Shashi Kant Mishra
    Abdelouahed Hamdi
    Journal of Inequalities and Applications, 2021
  • [24] Hermite–Hadamard-type inequalities involving ψ-Riemann–Liouville fractional integrals via s-convex functions
    Yong Zhao
    Haiwei Sang
    Weicheng Xiong
    Zhongwei Cui
    Journal of Inequalities and Applications, 2020
  • [25] GENERALIZATION OF HADAMARD-TYPE TRAPEZOID INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS
    Bayraktar, B.
    Ozdemir, M. Emin
    UFA MATHEMATICAL JOURNAL, 2021, 13 (01): : 119 - 130
  • [26] Hermite–Hadamard-type inequalities via different convexities with applications
    Muhammad Samraiz
    Maria Malik
    Saima Naheed
    Gauhar Rahman
    Kamsing Nonlaopon
    Journal of Inequalities and Applications, 2023
  • [27] Hermite–Hadamard-type inequalities for r-convex functions based on the use of Riemann–Liouville fractional integrals
    J. Wang
    J. Deng
    M. Fečkan
    Ukrainian Mathematical Journal, 2013, 65 : 193 - 211
  • [28] Hadamard-Type Inequalities for s-Convex Functions I
    Hussain, S.
    Bhatti, M. I.
    Iqbal, M.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2009, 41 : 51 - 60
  • [29] On Some Hadamard-Type Inequalities for (r, m)-Convex Functions
    Ozdemir, M. Emin
    Set, Erhan
    Akdemir, Ahmet Ocak
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (01): : 388 - 401
  • [30] Hermite–Hadamard-Type Inequalities Arising from Tempered Fractional Integrals Including Twice-Differentiable Functions
    Fatih Hezenci
    Hüseyin Budak
    Muhammad Amer Latif
    Ukrainian Mathematical Journal, 2025, 76 (9) : 1572 - 1590