Regularity and h-polynomials of Binomial Edge Ideals

被引:0
|
作者
Takayuki Hibi
Kazunori Matsuda
机构
[1] Osaka University,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[2] Kitami Institute of Technology,undefined
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; -polynomial; 05E40; 13H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite simple graph on the vertex set [n] = {1,…, n} and K[x, y] = K[x1,…, xn, y1,…, yn] the polynomial ring in 2n variables over a field K with each degxi=degyj=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg x_{i} = \deg y_{j} = 1$\end{document}. The binomial edge ideal of G is the binomial ideal JG ⊂ K[x, y] which is generated by those binomials xiyj − xjyi for which {i, j} is an edge of G. The Hilbert series HK[x,y]/JG(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )$\end{document} of K[x, y]/JG is of the form HK[x,y]/JG(λ)=hK[x,y]/JG(λ)/(1−λ)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )/(1 - \lambda )^{d}$\end{document}, where d=dimK[x,y]/JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d = \dim K[\mathbf {x}, \mathbf { y}]/J_{G}$\end{document} and where hK[x,y]/JG(λ)=h0+h1λ+h2λ2+⋯+hsλs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = h_{0} + h_{1}\lambda + h_{2}\lambda ^{2} + {\cdots } + h_{s}\lambda ^{s}$\end{document} with each hi∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{i} \in \mathbb Z$\end{document} and with hs≠ 0 is the h-polynomial of K[x, y]/JG. It is known that, when K[x, y]/JG is Cohen–Macaulay, one has reg(K[x,y]/JG)=deghK[x,y]/JG(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {reg}(K[\mathbf {x}, \mathbf {y}]/J_{G}) = \deg h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )$\end{document}, where reg(K[x, y]/JG) is the (Castelnuovo–Mumford) regularity of K[x, y]/JG. In the present paper, given arbitrary integers r and s with 2 ≤ r ≤ s, a finite simple graph G for which reg(K[x, y]/JG) = r and deghK[x,y]/JG(λ)=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = s$\end{document} will be constructed.
引用
收藏
页码:369 / 374
页数:5
相关论文
共 50 条
  • [41] Closed binomial edge ideals
    Peeva, Irena
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 1 - 33
  • [42] Parity binomial edge ideals
    Kahle, Thomas
    Sarmiento, Camilo
    Windisch, Tobias
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (01) : 99 - 117
  • [43] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [44] Binomial Edge Ideals: A Survey
    Madani, Sara Saeedi
    MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 83 - 94
  • [45] Parity binomial edge ideals
    Thomas Kahle
    Camilo Sarmiento
    Tobias Windisch
    Journal of Algebraic Combinatorics, 2016, 44 : 99 - 117
  • [46] Regularity of powers of d-sequence (parity) binomial edge ideals of unicycle graphs
    Amalore Nambi, Marie
    Kumar, Neeraj
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2598 - 2615
  • [47] On the Regularity and Defect Sequence of Monomial and Binomial Ideals
    Keivan Borna
    Abolfazl Mohajer
    Czechoslovak Mathematical Journal, 2019, 69 : 653 - 664
  • [48] On the Regularity and Defect Sequence of Monomial and Binomial Ideals
    Borna, Keivan
    Mohajer, Abolfazl
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 653 - 664
  • [49] The regularity of powers of edge ideals
    Banerjee, Arindam
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) : 303 - 321
  • [50] The regularity of powers of edge ideals
    Arindam Banerjee
    Journal of Algebraic Combinatorics, 2015, 41 : 303 - 321