Regularity and h-polynomials of Binomial Edge Ideals

被引:0
|
作者
Takayuki Hibi
Kazunori Matsuda
机构
[1] Osaka University,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[2] Kitami Institute of Technology,undefined
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; -polynomial; 05E40; 13H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite simple graph on the vertex set [n] = {1,…, n} and K[x, y] = K[x1,…, xn, y1,…, yn] the polynomial ring in 2n variables over a field K with each degxi=degyj=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg x_{i} = \deg y_{j} = 1$\end{document}. The binomial edge ideal of G is the binomial ideal JG ⊂ K[x, y] which is generated by those binomials xiyj − xjyi for which {i, j} is an edge of G. The Hilbert series HK[x,y]/JG(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )$\end{document} of K[x, y]/JG is of the form HK[x,y]/JG(λ)=hK[x,y]/JG(λ)/(1−λ)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )/(1 - \lambda )^{d}$\end{document}, where d=dimK[x,y]/JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d = \dim K[\mathbf {x}, \mathbf { y}]/J_{G}$\end{document} and where hK[x,y]/JG(λ)=h0+h1λ+h2λ2+⋯+hsλs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = h_{0} + h_{1}\lambda + h_{2}\lambda ^{2} + {\cdots } + h_{s}\lambda ^{s}$\end{document} with each hi∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{i} \in \mathbb Z$\end{document} and with hs≠ 0 is the h-polynomial of K[x, y]/JG. It is known that, when K[x, y]/JG is Cohen–Macaulay, one has reg(K[x,y]/JG)=deghK[x,y]/JG(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {reg}(K[\mathbf {x}, \mathbf {y}]/J_{G}) = \deg h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )$\end{document}, where reg(K[x, y]/JG) is the (Castelnuovo–Mumford) regularity of K[x, y]/JG. In the present paper, given arbitrary integers r and s with 2 ≤ r ≤ s, a finite simple graph G for which reg(K[x, y]/JG) = r and deghK[x,y]/JG(λ)=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = s$\end{document} will be constructed.
引用
收藏
页码:369 / 374
页数:5
相关论文
共 50 条
  • [21] The Castelnuovo-Mumford regularity of binomial edge ideals
    Kiani, Dariush
    Madani, Sara Saeedi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 139 : 80 - 86
  • [22] Regularity of binomial edge ideals of certain block graphs
    A V Jayanthan
    N Narayanan
    B V Raghavendra Rao
    Proceedings - Mathematical Sciences, 2019, 129
  • [23] An upper bound for the regularity of binomial edge ideals of trees
    Jayanthan, A., V
    Narayanan, N.
    Rao, B. V. Raghavendra
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (09)
  • [24] Segre Product, H-Polynomials, and Castelnuovo-Mumford Regularity
    Morales, Marcel
    Dung, Nguyen Thi
    ACTA MATHEMATICA VIETNAMICA, 2015, 40 (01) : 111 - 124
  • [25] H-polynomials and rook polynomials
    Can, Mahir Bilen
    Renner, Lex E.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (05) : 935 - 949
  • [26] Regularity of Powers of Binomial Edge Ideals of Complete Multipartite Graphs
    Wang, Hong
    Tang, Zhongming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) : 793 - 810
  • [27] Krull dimension and regularity of binomial edge ideals of block graphs
    Mascia, Carla
    Rinaldo, Giancarlo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (07)
  • [28] Regularity of powers of binomial edge ideals of complete multipartite graphs
    Hong Wang
    Zhongming Tang
    Czechoslovak Mathematical Journal, 2023, 73 : 793 - 810
  • [29] Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs
    Jayanthan, A. V.
    Kumar, Arvind
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4797 - 4805
  • [30] Regularity of Initial Ideal of Binomial Edge Ideals in Degree 2 and Their Powers
    Rahim, Bakhtyar Mahmood
    Saremi, Hero
    Hama, Mudhafar Fattah
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 2246 - 2254