Regularity and h-polynomials of Binomial Edge Ideals

被引:0
|
作者
Takayuki Hibi
Kazunori Matsuda
机构
[1] Osaka University,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[2] Kitami Institute of Technology,undefined
来源
关键词
Binomial edge ideal; Castelnuovo–Mumford regularity; -polynomial; 05E40; 13H10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite simple graph on the vertex set [n] = {1,…, n} and K[x, y] = K[x1,…, xn, y1,…, yn] the polynomial ring in 2n variables over a field K with each degxi=degyj=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg x_{i} = \deg y_{j} = 1$\end{document}. The binomial edge ideal of G is the binomial ideal JG ⊂ K[x, y] which is generated by those binomials xiyj − xjyi for which {i, j} is an edge of G. The Hilbert series HK[x,y]/JG(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )$\end{document} of K[x, y]/JG is of the form HK[x,y]/JG(λ)=hK[x,y]/JG(λ)/(1−λ)d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )/(1 - \lambda )^{d}$\end{document}, where d=dimK[x,y]/JG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d = \dim K[\mathbf {x}, \mathbf { y}]/J_{G}$\end{document} and where hK[x,y]/JG(λ)=h0+h1λ+h2λ2+⋯+hsλs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = h_{0} + h_{1}\lambda + h_{2}\lambda ^{2} + {\cdots } + h_{s}\lambda ^{s}$\end{document} with each hi∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h_{i} \in \mathbb Z$\end{document} and with hs≠ 0 is the h-polynomial of K[x, y]/JG. It is known that, when K[x, y]/JG is Cohen–Macaulay, one has reg(K[x,y]/JG)=deghK[x,y]/JG(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {reg}(K[\mathbf {x}, \mathbf {y}]/J_{G}) = \deg h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda )$\end{document}, where reg(K[x, y]/JG) is the (Castelnuovo–Mumford) regularity of K[x, y]/JG. In the present paper, given arbitrary integers r and s with 2 ≤ r ≤ s, a finite simple graph G for which reg(K[x, y]/JG) = r and deghK[x,y]/JG(λ)=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\deg h_{K[\mathbf {x}, \mathbf {y}]/J_{G}}(\lambda ) = s$\end{document} will be constructed.
引用
收藏
页码:369 / 374
页数:5
相关论文
共 50 条
  • [1] Regularity and h-polynomials of Binomial Edge Ideals
    Hibi, Takayuki
    Matsuda, Kazunori
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) : 369 - 374
  • [2] Regularity and h-polynomials of edge ideals
    Hibi, Takayuki
    Matsuda, Kazunori
    Van Tuyl, Adam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (01):
  • [3] Regularity and h-polynomials of monomial ideals
    Hibi, Takayuki
    Matsuda, Kazunori
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2427 - 2434
  • [4] REGULARITY AND h-POLYNOMIALS OF TORIC IDEALS OF GRAPHS
    Favacchio, Giuseppe
    Keiper, Graham
    Van Tuyl, Adam
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (11) : 4665 - 4677
  • [5] Lexsegment Ideals and Their h-Polynomials
    Takayuki Hibi
    Kazunori Matsuda
    Acta Mathematica Vietnamica, 2019, 44 : 83 - 86
  • [6] Lexsegment Ideals and Their h-Polynomials
    Hibi, Takayuki
    Matsuda, Kazunori
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (01) : 83 - 86
  • [7] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [8] REGULARITY BOUNDS FOR BINOMIAL EDGE IDEALS
    Matsuda, Kazunori
    Murai, Satoshi
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) : 141 - 149
  • [9] REGULARITY OF PARITY BINOMIAL EDGE IDEALS
    Kumar, Arvind
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (07) : 2727 - 2737
  • [10] Binomial edge ideals and bounds for their regularity
    Kumar, Arvind
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 729 - 742