Latin Squares, Partial Latin Squares and Their Generalized Quotients

被引:0
|
作者
Glebsky L. Yu
Carlos J. Rubio
机构
[1] Instituto de Investigación en Comunicación Optica,
来源
Graphs and Combinatorics | 2005年 / 21卷
关键词
Generalize Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
A (partial) Latin square is a table of multiplication of a (partial) quasigroup. Multiplication of a (partial) quasigroup may be considered as a set of triples. We give a necessary and sufficient condition for a set of triples to be a quotient of a (partial) Latin square.
引用
收藏
页码:365 / 375
页数:10
相关论文
共 50 条
  • [21] THE COMPLEXITY OF COMPLETING PARTIAL LATIN SQUARES
    COLBOURN, CJ
    DISCRETE APPLIED MATHEMATICS, 1984, 8 (01) : 25 - 30
  • [22] Covers and partial transversals of Latin squares
    Best, Darcy
    Marbach, Trent
    Stones, Rebecca J.
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 1109 - 1136
  • [23] The set of autotopisms of partial Latin squares
    Falcon, R. M.
    DISCRETE MATHEMATICS, 2013, 313 (11) : 1150 - 1161
  • [24] Constrained completion of partial latin squares
    Kuhl, Jaromy
    Denley, Tristan
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1251 - 1256
  • [25] EMBEDDING ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (01) : 184 - 186
  • [26] Completing some partial Latin squares
    Denley, T
    Häggkvist, R
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (07) : 877 - 880
  • [27] Covers and partial transversals of Latin squares
    Darcy Best
    Trent Marbach
    Rebecca J. Stones
    Ian M. Wanless
    Designs, Codes and Cryptography, 2019, 87 : 1109 - 1136
  • [28] EMBEDDING ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A37 - A37
  • [29] Avoiding Pairs of Partial Latin Squares
    Jaromy Kuhl
    Hannah Hinojosa
    Graphs and Combinatorics, 2014, 30 : 671 - 685
  • [30] Avoiding Pairs of Partial Latin Squares
    Kuhl, Jaromy
    Hinojosa, Hannah
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 671 - 685