Covers and partial transversals of Latin squares

被引:0
|
作者
Darcy Best
Trent Marbach
Rebecca J. Stones
Ian M. Wanless
机构
[1] Monash University,School of Mathematics
[2] Nankai University,Nankai
来源
关键词
Latin square; Transversal; Covers; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
We define a cover of a Latin square to be a set of entries that includes at least one representative of each row, column and symbol. A cover is minimal if it does not contain any smaller cover. A partial transversal is a set of entries that includes at most one representative of each row, column and symbol. A partial transversal is maximal if it is not contained in any larger partial transversal. We explore the relationship between covers and partial transversals. We prove the following: (1) The minimum size of a cover in a Latin square of order n is n+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+a$$\end{document} if and only if the maximum size of a partial transversal is either n-2a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2a$$\end{document} or n-2a+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2a+1$$\end{document}. (2) A minimal cover in a Latin square of order n has size at most μn=3(n+1/2-n+1/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n=3(n+1/2-\sqrt{n+1/4})$$\end{document}. (3) There are infinitely many orders n for which there exists a Latin square having a minimal cover of every size from n to μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n$$\end{document}. (4) Every Latin square of order n has a minimal cover of a size which is asymptotically equal to μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n$$\end{document}. (5) If 1⩽k⩽n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant k\leqslant n/2$$\end{document} and n⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 5$$\end{document} then there is a Latin square of order n with a maximal partial transversal of size n-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k$$\end{document}. (6) For any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, asymptotically almost all Latin squares have no maximal partial transversal of size less than n-n2/3+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-n^{2/3+\varepsilon }$$\end{document}.
引用
收藏
页码:1109 / 1136
页数:27
相关论文
共 50 条
  • [1] Covers and partial transversals of Latin squares
    Best, Darcy
    Marbach, Trent
    Stones, Rebecca J.
    Wanless, Ian M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 1109 - 1136
  • [3] Maximal partial transversals in a class of latin squares
    Evans, Anthony B.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 179 - 199
  • [4] Latin squares with maximal partial transversals of many lengths
    Evans, Anthony B.
    Mammoliti, Adam
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [5] ON TRANSVERSALS IN LATIN SQUARES
    BALASUBRAMANIAN, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 131 : 125 - 129
  • [6] Latin squares with no transversals
    Cavenagh, Nicholas J.
    Wanless, Ian M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [7] Transversals of additive latin squares
    Dasgupta, S
    Károlyi, G
    Serra, O
    Szegedy, B
    ISRAEL JOURNAL OF MATHEMATICS, 2001, 126 (1) : 17 - 28
  • [8] Transversals in quasirandom latin squares
    Eberhard, Sean
    Manners, Freddie
    Mrazovic, Rudi
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 127 (01) : 84 - 115
  • [9] Transversals in generalized Latin squares
    Barat, Janos
    Nagy, Zoltan Lorant
    ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) : 39 - 47
  • [10] SUBSQUARES AND TRANSVERSALS IN LATIN SQUARES
    VANREES, GHJ
    ARS COMBINATORIA, 1990, 29B : 193 - 204