Covers and partial transversals of Latin squares

被引:0
|
作者
Darcy Best
Trent Marbach
Rebecca J. Stones
Ian M. Wanless
机构
[1] Monash University,School of Mathematics
[2] Nankai University,Nankai
来源
关键词
Latin square; Transversal; Covers; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
We define a cover of a Latin square to be a set of entries that includes at least one representative of each row, column and symbol. A cover is minimal if it does not contain any smaller cover. A partial transversal is a set of entries that includes at most one representative of each row, column and symbol. A partial transversal is maximal if it is not contained in any larger partial transversal. We explore the relationship between covers and partial transversals. We prove the following: (1) The minimum size of a cover in a Latin square of order n is n+a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+a$$\end{document} if and only if the maximum size of a partial transversal is either n-2a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2a$$\end{document} or n-2a+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-2a+1$$\end{document}. (2) A minimal cover in a Latin square of order n has size at most μn=3(n+1/2-n+1/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n=3(n+1/2-\sqrt{n+1/4})$$\end{document}. (3) There are infinitely many orders n for which there exists a Latin square having a minimal cover of every size from n to μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n$$\end{document}. (4) Every Latin square of order n has a minimal cover of a size which is asymptotically equal to μn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _n$$\end{document}. (5) If 1⩽k⩽n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant k\leqslant n/2$$\end{document} and n⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 5$$\end{document} then there is a Latin square of order n with a maximal partial transversal of size n-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k$$\end{document}. (6) For any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, asymptotically almost all Latin squares have no maximal partial transversal of size less than n-n2/3+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-n^{2/3+\varepsilon }$$\end{document}.
引用
收藏
页码:1109 / 1136
页数:27
相关论文
共 50 条
  • [41] Constrained completion of partial latin squares
    Kuhl, Jaromy
    Denley, Tristan
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1251 - 1256
  • [42] EMBEDDING ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (01) : 184 - 186
  • [43] Completing some partial Latin squares
    Denley, T
    Häggkvist, R
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (07) : 877 - 880
  • [44] EMBEDDING ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A37 - A37
  • [45] Completions of ε-Dense Partial Latin Squares
    Bartlett, Padraic
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (10) : 447 - 463
  • [46] Avoiding partial Latin squares and intricacy
    Chetwynd, AG
    Rhodes, SJ
    DISCRETE MATHEMATICS, 1997, 177 (1-3) : 17 - 32
  • [47] Partial Latin squares and their generalized quotients
    Glebsky, L. Yu.
    Rubio, Carlos J.
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (05): : 1157 - 1167
  • [48] Avoiding Pairs of Partial Latin Squares
    Jaromy Kuhl
    Hannah Hinojosa
    Graphs and Combinatorics, 2014, 30 : 671 - 685
  • [49] Avoiding Pairs of Partial Latin Squares
    Kuhl, Jaromy
    Hinojosa, Hannah
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 671 - 685
  • [50] On maximal partial costas latin squares
    Frank, Morgan R.
    Dinitz, Jeffrey H.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 93 : 23 - 32