A Remarkable Measure Preserving Diffeomorphism between two Convex Bodies in ℝn

被引:0
|
作者
S. Alesker
S. Dar
V. Milman
机构
[1] Tel-Aviv University,Department of Mathematics
来源
Geometriae Dedicata | 1999年 / 74卷
关键词
Brenier map; Alexandrov-Fenchel inequalies.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for any two convex open bounded bodies K and T there exists a diffeomorphism f : K → T preserving volume ratio (i.e. with constant determinant of the Jacobian) and such that the Minkowski sum K + T { x + f (x) | x ∈ K }. As an application of this method, we prove some of the Alexandov–Fenchel inequalities.
引用
收藏
页码:201 / 212
页数:11
相关论文
共 50 条
  • [1] A remarkable measure preserving diffeomorphism between two convex bodies in Rn
    Alesker, S
    Dar, S
    Milman, V
    GEOMETRIAE DEDICATA, 1999, 74 (02) : 201 - 212
  • [2] On the extremal distance between two convex bodies
    Jimenez, C. Hugo
    Naszodi, Marton
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 103 - 115
  • [3] On the extremal distance between two convex bodies
    C. Hugo Jiménez
    Márton Naszódi
    Israel Journal of Mathematics, 2011, 183 : 103 - 115
  • [4] ON A MEASURE OF ASYMMETRY OF CONVEX BODIES
    ASPLUND, E
    GRUNBAUM, B
    GROSSWALD, E
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (APR): : 217 - &
  • [5] On the Equivalence Between Two Problems of Asymmetry on Convex Bodies
    Christos Saroglou
    Discrete & Computational Geometry, 2015, 54 : 573 - 585
  • [6] On the Equivalence Between Two Problems of Asymmetry on Convex Bodies
    Saroglou, Christos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 573 - 585
  • [7] Gaussian measure of sections of convex bodies
    Zvavitch, A
    ADVANCES IN MATHEMATICS, 2004, 188 (01) : 124 - 136
  • [8] On the volume of the convex hull of two convex bodies
    Ákos G. Horváth
    Zsolt Lángi
    Monatshefte für Mathematik, 2014, 174 : 219 - 229
  • [9] On the volume of the convex hull of two convex bodies
    Horvath, Akos G.
    Langi, Zsolt
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 219 - 229
  • [10] The harmonic mean measure of symmetry for convex bodies
    Taschuk, Steven
    ADVANCES IN GEOMETRY, 2015, 15 (01) : 109 - 120