A Remarkable Measure Preserving Diffeomorphism between two Convex Bodies in ℝn

被引:0
|
作者
S. Alesker
S. Dar
V. Milman
机构
[1] Tel-Aviv University,Department of Mathematics
来源
Geometriae Dedicata | 1999年 / 74卷
关键词
Brenier map; Alexandrov-Fenchel inequalies.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for any two convex open bounded bodies K and T there exists a diffeomorphism f : K → T preserving volume ratio (i.e. with constant determinant of the Jacobian) and such that the Minkowski sum K + T { x + f (x) | x ∈ K }. As an application of this method, we prove some of the Alexandov–Fenchel inequalities.
引用
收藏
页码:201 / 212
页数:11
相关论文
共 50 条
  • [31] DISTANCES BETWEEN REMARKABLE POINTS AND INEQUALITIES IN A CONVEX QUADRILATERAL
    Tabov, Dr. Yordan
    Stefanov, Stanislav
    Kanchev, Krasimir
    Haimov, Haim
    MATHEMATICS AND INFORMATICS, 2024, 67 (03): : 253 - 274
  • [32] SHADOW BOUNDARIES OF TYPICAL CONVEX-BODIES - MEASURE PROPERTIES
    GRUBER, PM
    SORGER, H
    MATHEMATIKA, 1989, 36 (71) : 142 - 152
  • [33] Cone-volume measure of general centered convex bodies
    Boeroeczky, Karoly J.
    Henk, Martin
    ADVANCES IN MATHEMATICS, 2016, 286 : 703 - 721
  • [34] On the 1-measure of asymmetry for convex bodies of constant width
    Jin H.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 201 - 206
  • [35] COMPACT CONVEX-BODIES WITH ONE CURVATURE MEASURE NEAR-THE-SURFACE MEASURE
    KOHLMANN, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 458 : 201 - 217
  • [36] A property of convex bodies in a space with n dimensions
    Vincensini, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1937, 204 : 1302 - 1304
  • [37] CONVEX-BODIES IN N-SPACE
    EHRHART, E
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (06): : 495 - 495
  • [38] CONDITIONS FOR HAVING A DIFFEOMORPHISM BETWEEN TWO BANACH SPACES
    Galewski, Marek
    Galewska, Elzbieta
    Schmeidel, Ewa
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [39] A Hyperplane Inequality for Measures of Convex Bodies in ℝn, n≤4
    Alexander Koldobsky
    Discrete & Computational Geometry, 2012, 47 : 538 - 547
  • [40] Extremal Distances between Sections of Convex Bodies
    M. Rudelson
    Geometric & Functional Analysis GAFA, 2004, 14 : 1063 - 1088