On the Equivalence Between Two Problems of Asymmetry on Convex Bodies

被引:0
|
作者
Christos Saroglou
机构
[1] Texas A&M University,Department of Mathematics
来源
关键词
Measure of asymmetry; Blaschke body; Projection body; Simplex;
D O I
暂无
中图分类号
学科分类号
摘要
The simplex was conjectured to be the extremal convex body for the two following “problems of asymmetry”: (P1) What is the minimal possible value of the quantity maxK′|K′|/|K|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{K'} |K'|/|K|$$\end{document}? Here, K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} ranges over all symmetric convex bodies contained in K. (P2) What is the maximal possible volume of the Blaschke body of a convex body of volume 1? Our main result states that (P1) and (P2) admit precisely the same solutions. This complements a result from Böröczky et al. (Discrete Math 69:101–120, 1986), stating that if the simplex solves (P1), then the simplex solves (P2) as well.
引用
收藏
页码:573 / 585
页数:12
相关论文
共 50 条
  • [1] On the Equivalence Between Two Problems of Asymmetry on Convex Bodies
    Saroglou, Christos
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 573 - 585
  • [2] TWO OPTIMISATION PROBLEMS FOR CONVEX BODIES
    Yang, Yunlong
    Zhang, Deyan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (01) : 137 - 145
  • [3] On asymmetry of some convex bodies
    Guo, Q
    Kaijser, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 27 (02) : 239 - 247
  • [4] On asymmetry of some convex bodies
    Qi Guo
    Sten Kaijser
    Discrete & Computational Geometry, 2002, 27 : 239 - 247
  • [5] ASYMMETRY CLASSES OF CONVEX BODIES
    SCHNEIDER, R
    MATHEMATIKA, 1974, 21 (41) : 12 - 18
  • [6] ON A MEASURE OF ASYMMETRY OF CONVEX BODIES
    ASPLUND, E
    GRUNBAUM, B
    GROSSWALD, E
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (APR): : 217 - &
  • [7] Volume of Convex Hull of Two Bodies and Related Problems
    Horvath, Akos G.
    DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 201 - 224
  • [8] On the extremal distance between two convex bodies
    Jimenez, C. Hugo
    Naszodi, Marton
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 103 - 115
  • [9] On the extremal distance between two convex bodies
    C. Hugo Jiménez
    Márton Naszódi
    Israel Journal of Mathematics, 2011, 183 : 103 - 115
  • [10] Asymmetry of Convex Bodies of Constant Width
    HaiLin Jin
    Qi Guo
    Discrete & Computational Geometry, 2012, 47 : 415 - 423