On the Equivalence Between Two Problems of Asymmetry on Convex Bodies

被引:0
|
作者
Christos Saroglou
机构
[1] Texas A&M University,Department of Mathematics
来源
关键词
Measure of asymmetry; Blaschke body; Projection body; Simplex;
D O I
暂无
中图分类号
学科分类号
摘要
The simplex was conjectured to be the extremal convex body for the two following “problems of asymmetry”: (P1) What is the minimal possible value of the quantity maxK′|K′|/|K|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{K'} |K'|/|K|$$\end{document}? Here, K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K'$$\end{document} ranges over all symmetric convex bodies contained in K. (P2) What is the maximal possible volume of the Blaschke body of a convex body of volume 1? Our main result states that (P1) and (P2) admit precisely the same solutions. This complements a result from Böröczky et al. (Discrete Math 69:101–120, 1986), stating that if the simplex solves (P1), then the simplex solves (P2) as well.
引用
收藏
页码:573 / 585
页数:12
相关论文
共 50 条
  • [31] On the volume ratio of two convex bodies
    Giannopoulos, A
    Hartzoulaki, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 703 - 707
  • [32] On the convolution body of two convex bodies
    Tsolomitis, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (01): : 63 - 67
  • [33] Extremal problems and isotropic positions of convex bodies
    A. A. Giannopoulos
    V. D. Milman
    Israel Journal of Mathematics, 2000, 117 : 29 - 60
  • [34] Minimal problems for convex bodies with bonds on the depths
    Malagoli, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2005, 8A (03): : 573 - 576
  • [35] Extremal problems and isotropic positions of convex bodies
    Giannopoulos, AA
    Milman, VD
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 117 (1) : 29 - 60
  • [36] Cyclic convex bodies and optimization moment problems
    Puente, Ruben
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 596 - 609
  • [37] Measure comparison problems for dilations of convex bodies
    Lafi, Malak
    Zvavitch, Artem
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 270 - 285
  • [38] Equivalence of convex minimization problems over base polytopes
    Nagano, Kiyohito
    Aihara, Kazuyuki
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2012, 29 (03) : 519 - 534
  • [39] Equivalence of convex minimization problems over base polytopes
    Kiyohito Nagano
    Kazuyuki Aihara
    Japan Journal of Industrial and Applied Mathematics, 2012, 29 : 519 - 534
  • [40] On the equivalence of two variational problems
    Giulia Treu
    Mihai Vornicescu
    Calculus of Variations and Partial Differential Equations, 2000, 11 : 307 - 319