Complexity and inapproximability results for the Power Edge Set problem

被引:0
|
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [41] Complexity of Networks II: The Set Complexity of Edge-Colored Graphs
    Ignac, Tomasz M.
    Sakhanenko, Nikita A.
    Galas, David J.
    COMPLEXITY, 2012, 17 (05) : 23 - 36
  • [42] On the Inapproximability of the Discrete Witsenhausen Problem
    Olshevsky, Alex
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 529 - 534
  • [43] Inapproximability results for the minimum integral solution problem with preprocessing over l∞ norm
    Chen, Wenbin
    Peng, Lingxi
    Wang, Jianxiong
    Li, Fufang
    Tang, Maobin
    Xiong, Wei
    Wang, Songtao
    THEORETICAL COMPUTER SCIENCE, 2013, 478 : 127 - 131
  • [44] Some optimal inapproximability results
    Håstad, J
    JOURNAL OF THE ACM, 2001, 48 (04) : 798 - 859
  • [45] On Streaming and Communication Complexity of the Set Cover Problem
    Demaine, Erik D.
    Indyk, Piotr
    Mahabadi, Sepideh
    Vakilian, Ali
    DISTRIBUTED COMPUTING (DISC 2014), 2014, 8784 : 484 - 498
  • [46] The Robust Set Problem: Parameterized Complexity and Approximation
    Bazgan, Cristina
    Chopin, Morgan
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 136 - 147
  • [47] On the complexity of the independent set problem in triangle graphs
    Orlovich, Yury
    Blazewicz, Jacek
    Dolgui, Alexandre
    Finke, Gerd
    Gordon, Valery
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1670 - 1680
  • [48] On the Complexity of the Minimum Independent Set Partition Problem
    Chan, T. -H. Hubert
    Papamanthou, Charalampos
    Zhao, Zhichao
    COMPUTING AND COMBINATORICS, 2015, 9198 : 121 - 132
  • [49] On the advice complexity of the online dominating set problem
    Bockenhauer, Hans-Joachim
    Hromkovicc, Juraj
    Krug, Sacha
    Unger, Walter
    THEORETICAL COMPUTER SCIENCE, 2021, 862 : 81 - 96
  • [50] Complexity issues for the sandwich homogeneous set problem
    Durand, Arnaud
    Habib, Michel
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (07) : 574 - 580