Complexity and inapproximability results for the Power Edge Set problem

被引:0
|
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [31] A dynamic edge covering and scheduling problem: complexity results and approximation algorithms
    Jiaming Qiu
    Thomas C. Sharkey
    Optimization Letters, 2014, 8 : 1201 - 1212
  • [32] INAPPROXIMABILITY RESULTS FOR MAXIMUM EDGE BICLIQUE, MINIMUM LINEAR ARRANGEMENT, AND SPARSEST CUT
    Ambuehl, Christoph
    Mastrolilli, Monaldo
    Svensson, Ola
    SIAM JOURNAL ON COMPUTING, 2011, 40 (02) : 567 - 596
  • [33] On the complexity of a set-union problem
    Lipton, RJ
    Martino, PJ
    Neitzke, A
    38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 110 - 115
  • [34] ON THE COMPLEXITY OF APPROXIMATING THE INDEPENDENT SET PROBLEM
    BERMAN, P
    SCHNITGER, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 349 : 256 - 268
  • [35] Inapproximability of the kidney exchange problem
    Biro, Peter
    Cechlarova, Katarina
    INFORMATION PROCESSING LETTERS, 2007, 101 (05) : 199 - 202
  • [36] ON THE COMPLEXITY OF APPROXIMATING THE INDEPENDENT SET PROBLEM
    BERMAN, P
    SCHNITGER, G
    INFORMATION AND COMPUTATION, 1992, 96 (01) : 77 - 94
  • [37] Complexity and approximability of the happy set problem
    Asahiro, Yuichi
    Eto, Hiroshi
    Hanaka, Tesshu
    Lin, Guohui
    Miyano, Eiji
    Terabaru, Ippei
    THEORETICAL COMPUTER SCIENCE, 2021, 866 : 123 - 144
  • [38] On the complexity of the Edge Label Placement problem
    Kakoulis, KC
    Tollis, IG
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (01): : 1 - 17
  • [39] MESSAGE COMPLEXITY OF THE SET INTERSECTION PROBLEM
    RAMARAO, KVS
    DALEY, R
    MELHEM, R
    INFORMATION PROCESSING LETTERS, 1988, 27 (04) : 169 - 174
  • [40] On the parameterized complexity of the Edge Monitoring problem
    Baste, Julien
    Beggas, Fairouz
    Kheddouci, Hamamache
    Sau, Ignasi
    INFORMATION PROCESSING LETTERS, 2017, 121 : 39 - 44