Complexity and inapproximability results for the Power Edge Set problem

被引:0
|
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [1] Complexity and inapproximability results for the Power Edge Set problem
    Toubaline, Sonia
    D'Ambrosio, Claudia
    Liberti, Leo
    Poirion, Pierre-Louis
    Schieber, Baruch
    Shachnai, Hadas
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (03) : 895 - 905
  • [2] Improved Complexity for Power Edge Set Problem
    Darties, Benoit
    Chateau, Annie
    Giroudeau, Rodolphe
    Weller, Matthias
    COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 128 - 141
  • [3] Complexity and lowers bounds for Power Edge Set Problem
    Darties, Benoit
    Champseix, Nicolas
    Chateau, Annie
    Giroudeau, Rodolphe
    Weller, Mathias
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 52-53 : 70 - 91
  • [4] Complexity and inapproximability results for balanced connected subgraph problem
    Martinod, T.
    Pollet, V
    Darties, B.
    Giroudeau, R.
    Konig, J-C
    THEORETICAL COMPUTER SCIENCE, 2021, 886 : 69 - 83
  • [5] Parameterized complexity and inapproximability of dominating set problem in chordal and near chordal graphs
    Liu, Chunmei
    Song, Yinglei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (04) : 684 - 698
  • [6] Parameterized complexity and inapproximability of dominating set problem in chordal and near chordal graphs
    Chunmei Liu
    Yinglei Song
    Journal of Combinatorial Optimization, 2011, 22 : 684 - 698
  • [7] New Results on Polynomial Inapproximability and Fixed Parameter Approximability of EDGE DOMINATING SET
    Escoffier, Bruno
    Monnot, Jerome
    Paschos, Vangelis Th.
    Xiao, Mingyu
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (02) : 330 - 346
  • [8] The Power Edge Set Problem
    Poirion, Pierre-Louis
    Toubaline, Sonia
    D'Ambrosio, Claudia
    Liberti, Leo
    NETWORKS, 2016, 68 (02) : 104 - 120
  • [9] New results on polynomial inapproximability and fixed parameter approximability of edge dominating set
    PSL Research University, Université Paris-Dauphine, LAMSADE, France
    不详
    不详
    Lect. Notes Comput. Sci., (25-36):
  • [10] Inapproximability of the edge-contraction problem
    Otsuki, Hideaki
    Hirata, Tomio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (05) : 1425 - 1427