Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold

被引:0
|
作者
Maria del Carmen Calvo
Guillermo G. R. Keilhauer
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Ciudad Universitaria,undefined
来源
Geometriae Dedicata | 1998年 / 71卷
关键词
connection map; tangent bundle; tensor field.;
D O I
暂无
中图分类号
学科分类号
摘要
To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with the one given by Kowalski–Sekizawa; in the skew-symmetric one, it does with that obtained by Janyška.
引用
收藏
页码:209 / 219
页数:10
相关论文
共 50 条
  • [41] The tangent bundle of an almost complex manifold
    Lempert, L
    Szóke, R
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (01): : 70 - 79
  • [42] Laplacians on the tangent bundle of Finsler manifold
    Zhong, Chunping
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 170 - 181
  • [43] On a 2-Form Derived by Riemannian Metric in the Tangent Bundle
    Gurbanova, Narmina
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (02): : 225 - 228
  • [44] RIEMANNIAN CONNECTION ON THE FIBERED TANGENT OF A FINSLER MANIFOLD
    YOUSSEF, NL
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (02): : 195 - 208
  • [45] RIEMANNIAN METRICS ON THE TANGENT BUNDLE OF A FINSLER SUBMANIFOLD
    Bejancu, Aurel
    Farran, Hani Reda
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 429 - 436
  • [46] ON A RIEMANNIAN MANIFOLD M2N WITH AN ALMOST TANGENT STRUCTURE
    HOUH, CS
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (06): : 759 - &
  • [47] On the G2 bundle of a Riemannian 4-manifold
    Albuquerque, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) : 924 - 939
  • [48] Laplacians on the holomorphic tangent bundle of a Kaehler manifold
    ZHONG ChunPing School of Mathematical Sciences
    Science China Mathematics, 2009, (12) : 2841 - 2854
  • [49] SASAKI METRIC ON THE TANGENT BUNDLE OF A WEYL MANIFOLD
    Bejan, Cornelia-Livia
    Gul, Ilhan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 103 (117): : 25 - 32
  • [50] Structures in a differentiable manifold and their applications to the tangent bundle
    Khan, Mohammad Nazrul Islam
    Ansari, Gufran Ahmad
    Adhoni, Zameer Ahmad
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 124 - 133