Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold

被引:0
|
作者
Maria del Carmen Calvo
Guillermo G. R. Keilhauer
机构
[1] Universidad de Buenos Aires,Departamento de Matemática
[2] Ciudad Universitaria,undefined
来源
Geometriae Dedicata | 1998年 / 71卷
关键词
connection map; tangent bundle; tensor field.;
D O I
暂无
中图分类号
学科分类号
摘要
To any (0, 2)-tensor field on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with the one given by Kowalski–Sekizawa; in the skew-symmetric one, it does with that obtained by Janyška.
引用
收藏
页码:209 / 219
页数:10
相关论文
共 50 条
  • [21] IFHP TRANSFORMATIONS ON THE TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD WITH A CLASS OF PSEUDO-RIEMANNIAN METRICS
    Zohrehvand, Mosayeb
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (02): : 170 - 178
  • [22] Divergence theorem for symmetric (0,2)-tensor fields on a semi-Riemannian manifold with boundary
    Ezin, Jean-Pierre
    Hassirou, Mouhamadou
    Tossa, Joel
    KODAI MATHEMATICAL JOURNAL, 2007, 30 (01) : 41 - 54
  • [23] A FLAT PSEUDO-RIEMANNIAN STRUCTURE ON THE TANGENT BUNDLE OF A FLAT MANIFOLD
    TROFIMOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (03) : 192 - 193
  • [24] Tangent bundle of a manifold and its homotopy type
    Byun, Y
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 303 - 307
  • [25] TENSOR-FIELDS DEFINING A TANGENT BUNDLE STRUCTURE
    DEFILIPPO, S
    LANDI, G
    MARMO, G
    VILASI, G
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1989, 50 (02): : 205 - 218
  • [26] PROJECTIVE VECTOR FIELDS ON THE TANGENT BUNDLE WITH A CLASS OF RIEMANNIAN METRICS
    Gezer, Aydin
    Bilen, Lokman
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (05): : 587 - 596
  • [27] Killing vector fields and the curvature tensor of a Riemannian manifold
    Nikonorov Y.G.
    Siberian Advances in Mathematics, 2014, 24 (3) : 187 - 192
  • [28] F-geodesics on the second order tangent bundle over a Riemannian manifold
    Djaa, Nour Elhouda
    Gezer, Aydin
    Karaca, Kubra
    FILOMAT, 2023, 37 (08) : 2561 - 2576
  • [29] On recurrence or Pseudo-symmetry of the Sasakian metric on the tangent bundle of a Riemannian manifold
    Binh, TQ
    Tamássy, L
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (04): : 555 - 560
  • [30] IPHP TRANSFORMATIONS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD WITH RESPECT TO A CLASS OF LIFT METRICS
    Zohrehvand, Mosayeb
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (02): : 82 - 92