On the Chromatic Number of the Visibility Graph of a Set of Points in the Plane

被引:0
|
作者
Jan Kára
Attila Pór
David R. Wood
机构
[1] Department of Applied Mathematics,
[2] Charles University,undefined
[3] 118 00 Prague 1 ,undefined
[4] Department of Mathematics,undefined
[5] Case Western University,undefined
[6] Cleveland,undefined
[7] OH 44106,undefined
[8] Departament de Matematica Aplicada II,undefined
[9] Universitat Politecnica de Catalunya,undefined
[10] E-08034 Barcelona,undefined
来源
Discrete & Computational Geometry | 2005年 / 34卷
关键词
Computational Mathematic; Line Segment; Open Problem; Chromatic Number; Visibility Graph;
D O I
暂无
中图分类号
学科分类号
摘要
The visibility graph V(P) of a point set P \subseteq R2 has vertex set P, such that two points v,w ∈ P are adjacent whenever there is no other point in P on the line segment between v and w. We study the chromatic number of V(P). We characterise the 2- and 3-chromatic visibility graphs. It is an open problem whether the chromatic number of a visibility graph is bounded by its clique number. Our main result is a super-polynomial lower bound on the chromatic number (in terms of the clique number).
引用
收藏
页码:497 / 506
页数:9
相关论文
共 50 条
  • [41] CHROMATIC NUMBER OF A GRAPH WITH SPECIFIED SKEWNESS
    KAINEN, PC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A653 - A653
  • [42] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    KEXUE TONGBAO, 1987, 32 (17): : 1223 - 1223
  • [43] ON THE AI,BI CHROMATIC NUMBER OF A GRAPH
    WINTER, PA
    ARS COMBINATORIA, 1987, 23A : 303 - 314
  • [44] TOTAL DOMINATOR CHROMATIC NUMBER OF A GRAPH
    Kazemi, Adel P.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 57 - 68
  • [45] CHROMATIC NUMBER OF SUBGRAPHS OF A GIVEN GRAPH
    RODL, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 64 (02) : 370 - 371
  • [46] The eternal game chromatic number of a graph
    Klostermeyer, William F.
    Mendoza, Hannah
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 13 - 25
  • [47] Eigenvalues and chromatic number of a signed graph
    Wang, Wei
    Yan, Zhidan
    Qian, Jianguo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 619 : 137 - 145
  • [48] Locating Chromatic Number of Palm Graph
    Welyyanti, Des
    Taufiqurrahman, Ibrahim
    Permana, Dony
    Zahra, Rifda Sasmi
    Yulianti, Lyra
    IAENG International Journal of Applied Mathematics, 2024, 54 (10) : 1969 - 1975
  • [49] Odd Chromatic Number of Graph Classes
    Belmonte, Remy
    Harutyunyan, Ararat
    Kohler, Noleen
    Melissinos, Nikolaos
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2023, 2023, 14093 : 44 - 58
  • [50] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    张忠辅
    张建勋
    王建方
    ScienceBulletin, 1987, (17) : 1223 - 1223