On the Chromatic Number of the Visibility Graph of a Set of Points in the Plane

被引:0
|
作者
Jan Kára
Attila Pór
David R. Wood
机构
[1] Department of Applied Mathematics,
[2] Charles University,undefined
[3] 118 00 Prague 1 ,undefined
[4] Department of Mathematics,undefined
[5] Case Western University,undefined
[6] Cleveland,undefined
[7] OH 44106,undefined
[8] Departament de Matematica Aplicada II,undefined
[9] Universitat Politecnica de Catalunya,undefined
[10] E-08034 Barcelona,undefined
来源
Discrete & Computational Geometry | 2005年 / 34卷
关键词
Computational Mathematic; Line Segment; Open Problem; Chromatic Number; Visibility Graph;
D O I
暂无
中图分类号
学科分类号
摘要
The visibility graph V(P) of a point set P \subseteq R2 has vertex set P, such that two points v,w ∈ P are adjacent whenever there is no other point in P on the line segment between v and w. We study the chromatic number of V(P). We characterise the 2- and 3-chromatic visibility graphs. It is an open problem whether the chromatic number of a visibility graph is bounded by its clique number. Our main result is a super-polynomial lower bound on the chromatic number (in terms of the clique number).
引用
收藏
页码:497 / 506
页数:9
相关论文
共 50 条
  • [21] THE STAR CHROMATIC NUMBER OF A GRAPH
    ABBOTT, HL
    ZHOU, B
    JOURNAL OF GRAPH THEORY, 1993, 17 (03) : 349 - 360
  • [22] An approximate chromatic number of a graph
    Marcu, Danut
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (04): : 461 - 464
  • [23] The chromatic number of a signed graph
    Macajova, Edita
    Raspaud, Andre
    Skoviera, Martin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [24] On the quantum chromatic number of a graph
    Cameron, Peter J.
    Montanaro, Ashley
    Newman, Michael W.
    Severini, Simone
    Winter, Andreas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [25] The chromatic covering number of a graph
    Naserasr, R
    Tardif, C
    JOURNAL OF GRAPH THEORY, 2006, 51 (03) : 199 - 204
  • [26] The chromatic number of graph powers
    Alon, N
    Mohar, B
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01): : 1 - 10
  • [27] THE MULTISET CHROMATIC NUMBER OF A GRAPH
    Chartrand, Gary
    Okamoto, Futaba
    Salehi, Ebrahim
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2009, 134 (02): : 191 - 209
  • [28] THE STRONG CHROMATIC NUMBER OF A GRAPH
    ALON, N
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (01) : 1 - 7
  • [29] Rank and chromatic number of a graph
    Kotlov, A
    JOURNAL OF GRAPH THEORY, 1997, 26 (01) : 1 - 8
  • [30] Spectral Inequalities on Independence Number, Chromatic Number, and Total Chromatic Number of a Graph
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (1-2): : 41 - 46