On The Approximability Of The Traveling Salesman Problem

被引:0
|
作者
Christos H. Papadimitriou*
Santosh Vempala†
机构
[1] U.C. Berkeley,Computer Science Division
[2] Massachusetts Institute of Technology,Department of Mathematics
来源
Combinatorica | 2006年 / 26卷
关键词
68Q17; 05D40;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the traveling salesman problem with triangle inequality cannot be approximated with a ratio better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{117}} {{116}} $$\end{document} when the edge lengths are allowed to be asymmetric and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{220}} {{219}} $$\end{document} when the edge lengths are symmetric, unless P=NP. The best previous lower bounds were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{2805}} {{2804}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{3813}} {{3812}} $$\end{document} respectively. The reduction is from Håstad’s maximum satisfiability of linear equations modulo 2, and is nonconstructive.
引用
收藏
页码:101 / 120
页数:19
相关论文
共 50 条
  • [41] Traveling Salesman Problem with Clustering
    Johannes J. Schneider
    Thomas Bukur
    Antje Krause
    Journal of Statistical Physics, 2010, 141 : 767 - 784
  • [42] THE TRAVELING-SALESMAN PROBLEM
    FLOOD, MM
    OPERATIONS RESEARCH, 1956, 4 (01) : 61 - 75
  • [43] The hierarchical traveling salesman problem
    Panchamgam, Kiran
    Xiong, Yupei
    Golden, Bruce
    Dussault, Benjamin
    Wasil, Edward
    OPTIMIZATION LETTERS, 2013, 7 (07) : 1517 - 1524
  • [44] The traveling salesman problem - Preface
    Raff, SJ
    COMPUTERS & OPERATIONS RESEARCH, 1999, 26 (04) : 293 - 293
  • [45] The balanced traveling salesman problem
    Larusic, John
    Punnen, Abraham P.
    COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (05) : 868 - 875
  • [46] Traveling Salesman Problem with Transportation
    Ungureanu, Valeriu
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2006, 14 (02) : 202 - 206
  • [47] Animation of the Traveling Salesman Problem
    ElAarag, Hala
    Romano, Sam
    2013 PROCEEDINGS OF IEEE SOUTHEASTCON, 2013,
  • [48] Submodularity and the traveling salesman problem
    Herer, YT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 114 (03) : 489 - 508
  • [49] ASPECTS OF THE TRAVELING SALESMAN PROBLEM
    HELD, M
    HOFFMAN, AJ
    JOHNSON, EL
    WOLFE, P
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1984, 28 (04) : 476 - 486
  • [50] FORMULATION OF M-SALESMAN TRAVELING SALESMAN PROBLEM
    GAVISH, B
    MANAGEMENT SCIENCE, 1976, 22 (06) : 704 - 705