We show that the traveling salesman problem with triangle inequality cannot be approximated with a ratio better than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\frac{{117}}
{{116}}
$$\end{document} when the edge lengths are allowed to be asymmetric and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\frac{{220}}
{{219}}
$$\end{document} when the edge lengths are symmetric, unless P=NP. The best previous lower bounds were \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\frac{{2805}}
{{2804}}
$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\frac{{3813}}
{{3812}}
$$\end{document} respectively. The reduction is from Håstad’s maximum satisfiability of linear equations modulo 2, and is nonconstructive.
机构:Johannes Gutenberg University of Mainz,Center for Computational Research Methods in Natural Sciences, Department of Physics, Mathematics, and Computer Science
Johannes J. Schneider
Thomas Bukur
论文数: 0引用数: 0
h-index: 0
机构:Johannes Gutenberg University of Mainz,Center for Computational Research Methods in Natural Sciences, Department of Physics, Mathematics, and Computer Science
Thomas Bukur
Antje Krause
论文数: 0引用数: 0
h-index: 0
机构:Johannes Gutenberg University of Mainz,Center for Computational Research Methods in Natural Sciences, Department of Physics, Mathematics, and Computer Science
Antje Krause
Journal of Statistical Physics,
2010,
141
: 767
-
784
机构:
Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, IsraelTechnion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel