On The Approximability Of The Traveling Salesman Problem

被引:0
|
作者
Christos H. Papadimitriou*
Santosh Vempala†
机构
[1] U.C. Berkeley,Computer Science Division
[2] Massachusetts Institute of Technology,Department of Mathematics
来源
Combinatorica | 2006年 / 26卷
关键词
68Q17; 05D40;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the traveling salesman problem with triangle inequality cannot be approximated with a ratio better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{117}} {{116}} $$\end{document} when the edge lengths are allowed to be asymmetric and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{220}} {{219}} $$\end{document} when the edge lengths are symmetric, unless P=NP. The best previous lower bounds were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{2805}} {{2804}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{3813}} {{3812}} $$\end{document} respectively. The reduction is from Håstad’s maximum satisfiability of linear equations modulo 2, and is nonconstructive.
引用
收藏
页码:101 / 120
页数:19
相关论文
共 50 条
  • [31] Animation of the traveling salesman problem
    Department of Mathematics and Computer Science, Stetson University, Deland, FL 32723, United States
    Conf Proc IEEE SOUTHEASTCON, 2012,
  • [32] THE LANDSCAPE OF THE TRAVELING SALESMAN PROBLEM
    STADLER, PF
    SCHNABL, W
    PHYSICS LETTERS A, 1992, 161 (04) : 337 - 344
  • [33] VARIANTS OF THE TRAVELING SALESMAN PROBLEM
    Patterson, Mike
    Friesen, Daniel
    STUDIES IN BUSINESS AND ECONOMICS, 2019, 14 (01) : 208 - 220
  • [34] Dynamic Traveling Salesman Problem
    Fabry, Jan
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2006, 2006, : 137 - 145
  • [35] Traveling salesman problem with a center
    Lipowski, A
    Lipowska, D
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [36] Traveling salesman problem of segments
    Xu, JH
    Lin, ZY
    Yang, Y
    Berezney, R
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2004, 14 (1-2) : 19 - 40
  • [37] Traveling Salesman Problem with Clustering
    Schneider, Johannes J.
    Bukur, Thomas
    Krause, Antje
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (05) : 767 - 784
  • [38] TRAVELING SALESMAN PROBLEM - A SURVEY
    BELLMORE, M
    NEHAUSE.GL
    OPERATIONS RESEARCH, 1968, 16 (03) : 538 - &
  • [39] The Attractive Traveling Salesman Problem
    Erdogan, Guenes
    Cordeau, Jean-Francois
    Laporte, Gilbert
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 203 (01) : 59 - 69
  • [40] The hierarchical traveling salesman problem
    Kiran Panchamgam
    Yupei Xiong
    Bruce Golden
    Benjamin Dussault
    Edward Wasil
    Optimization Letters, 2013, 7 : 1517 - 1524