On The Approximability Of The Traveling Salesman Problem

被引:0
|
作者
Christos H. Papadimitriou*
Santosh Vempala†
机构
[1] U.C. Berkeley,Computer Science Division
[2] Massachusetts Institute of Technology,Department of Mathematics
来源
Combinatorica | 2006年 / 26卷
关键词
68Q17; 05D40;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the traveling salesman problem with triangle inequality cannot be approximated with a ratio better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{117}} {{116}} $$\end{document} when the edge lengths are allowed to be asymmetric and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{220}} {{219}} $$\end{document} when the edge lengths are symmetric, unless P=NP. The best previous lower bounds were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{2805}} {{2804}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{3813}} {{3812}} $$\end{document} respectively. The reduction is from Håstad’s maximum satisfiability of linear equations modulo 2, and is nonconstructive.
引用
收藏
页码:101 / 120
页数:19
相关论文
共 50 条