Around Operator Monotone Functions

被引:0
|
作者
Mohammad Sal Moslehian
Hamed Najafi
机构
[1] Ferdowsi University of Mashhad,Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS)
来源
关键词
Primary 47A63; Secondary 47B10; 47A30; Operator monotone function; Jordan product; operator convex function; subadditivity; composition of functions;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the symmetrized product AB + BA of two positive operators A and B is positive if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(A+B)\leq f(A)+f(B)}$$\end{document} for all non-negative operator monotone functions f on [0,∞) and deduce an operator inequality. We also give a necessary and sufficient condition for that the composition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \circ g}$$\end{document} of an operator convex function f on [0,∞) and a non-negative operator monotone function g on an interval (a, b) is operator monotone and present some applications.
引用
收藏
页码:575 / 582
页数:7
相关论文
共 50 条