Around Operator Monotone Functions

被引:0
|
作者
Mohammad Sal Moslehian
Hamed Najafi
机构
[1] Ferdowsi University of Mashhad,Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS)
来源
关键词
Primary 47A63; Secondary 47B10; 47A30; Operator monotone function; Jordan product; operator convex function; subadditivity; composition of functions;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the symmetrized product AB + BA of two positive operators A and B is positive if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(A+B)\leq f(A)+f(B)}$$\end{document} for all non-negative operator monotone functions f on [0,∞) and deduce an operator inequality. We also give a necessary and sufficient condition for that the composition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \circ g}$$\end{document} of an operator convex function f on [0,∞) and a non-negative operator monotone function g on an interval (a, b) is operator monotone and present some applications.
引用
收藏
页码:575 / 582
页数:7
相关论文
共 50 条
  • [21] New inequalities for operator monotone functions
    Dragomir, Silvestru Sever
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (01): : 137 - 145
  • [22] Some Results on Operator Monotone Functions
    Du, Xiaoqin
    Jiang, Jianfei
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 39 - 42
  • [23] SOME INEQUALITIES OF OPERATOR MONOTONE FUNCTIONS
    Zuo, Hongliang
    Duan, Guangcai
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04): : 777 - 781
  • [24] New characterizations of operator monotone functions
    Vo, Bich Khue
    Dinh, Trung Hoa
    Osaka, Hiroyuki
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (3-4): : 623 - 636
  • [25] Application of operator monotone functions in economics
    Hansen, Frank
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2010, 59 (01) : 42 - 47
  • [26] Operator monotone functions of several variables
    Hansen, F
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 1 - 17
  • [27] A Note on Real Operator Monotone Functions
    Gaal, Marcell
    Palfia, Miklos
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (06) : 4259 - 4279
  • [28] Monotone operator functions on C*-algebras
    Osaka, H
    Silvestrov, S
    Tomiyama, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (02) : 181 - 196
  • [29] Two sequences of operator monotone functions
    Jiang, Jian-Fei
    Zhang, Lei
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 103 - 106
  • [30] CLASSES OF OPERATOR MONOTONE-FUNCTIONS AND STIELTJES FUNCTIONS
    NAKAMURA, Y
    GOHBERG ANNIVERSARY COLLECTION, VOL 2: TOPICS IN ANALYSIS AND OPERATOR THEORY, 1989, 41 : 395 - 404