Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors

被引:88
|
作者
Lee, Sanghoon [1 ]
Lee, Kang-Kun [1 ]
Yoon, Heesung [2 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak Ro, Seoul, South Korea
[2] Korea Inst Geosci & Mineral Resources KIGAM, 124 Gwahang No, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Groundwater management; Groundwater recharge; water budget; Groundwater level forecasting; Artificial neural network; South Korea; FLUCTUATIONS; SIMULATION; PREDICTION; FLOW;
D O I
10.1007/s10040-018-1866-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Change in groundwater level is predicted for a special site where transient natural factors affecting the groundwater level are mixed with very irregular anthropogenic influences. When there is not enough hydrogeological information about the area to be analyzed, an artificial neural network (ANN) is a powerful tool for groundwater level forecasting in highly irregular and uncertain groundwater systems. In this study, groundwater levels were predicted by using ANN models with input variables composed of one natural factor and two anthropogenic factors in Yangpyeong riverside area, South Korea. Complex and irregular change of the groundwater level was monitored due to the operation of a groundwater heat pump system and winter intensive pumping for water curtain cultivation (by which greenhouses are warmed). The prediction results showed good performance with root mean square errors of 3-6cm when the average groundwater level is about 25.59m, the correlation coefficient is >0.9 and the Nash-Sutcliffe efficiency is >0.75, indicating that the ANN models are well suited for assessing complex groundwater systems. Along with the prediction, an extraction method was devised to calculate contributions and relative impacts of the input variables in the time-series-based ANN models. As a result, it was proved that the river level dominantly affects the groundwater level fluctuation, and the contributions of each influencing factor were obtained reliably according to spatial distribution and temporal variance. This makes the scheme effective for managing and using groundwater resources with consideration of every crucial influencing factor of the groundwater level fluctuation.
引用
收藏
页码:567 / 579
页数:13
相关论文
共 50 条
  • [11] Forecasting of Groundwater Level using Artificial Neural Network by incorporating river recharge and river bank infiltration
    Shamsuddin, Mohd Khairul Nizar
    Kusin, Faradiella Mohd
    Sulaiman, Wan Nor Azmin
    Ramli, Mohammad Firuz
    Baharuddin, Mohamad Faizal Tajul
    Adnan, Mohd Shalahuddin
    INTERNATIONAL SYMPOSIUM ON CIVIL AND ENVIRONMENTAL ENGINEERING 2016 (ISCEE 2016), 2017, 103
  • [12] Graph neural network for groundwater level forecasting
    Bai, Tao
    Tahmasebi, Pejman
    JOURNAL OF HYDROLOGY, 2023, 616
  • [13] Study on groundwater level forecasting in choushui creek alluvial fan using artificial neural network approaches
    Hsu, Nien-Sheng
    Lin, Wei-Taw
    Chen, Ching-Wen
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2009, 21 (03): : 285 - 294
  • [14] Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India
    Mohanty, Sheelabhadra
    Jha, Madan K.
    Kumar, Ashwani
    Sudheer, K. P.
    WATER RESOURCES MANAGEMENT, 2010, 24 (09) : 1845 - 1865
  • [15] Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India
    Sheelabhadra Mohanty
    Madan K. Jha
    Ashwani Kumar
    K. P. Sudheer
    Water Resources Management, 2010, 24 : 1845 - 1865
  • [16] Analysis of artificial neural network performance based on influencing factors for temperature forecasting applications
    Madhiarasan, M.
    Tipaldi, M.
    Siano, P.
    JOURNAL OF HIGH SPEED NETWORKS, 2020, 26 (03) : 209 - 223
  • [17] Prediction of groundwater level using artificial neural network as an alternative approach: a comparison assessment with numerical groundwater flow model
    Kerebih, Mulu Sewinet
    Keshari, Ashok K.
    HYDROLOGICAL SCIENCES JOURNAL, 2024, 69 (13) : 1691 - 1701
  • [18] Forecasting groundwater level by artificial neural networks as an alternative approach to groundwater modeling
    Manouchehr Chitsazan
    Gholamreza Rahmani
    Ahmad Neyamadpour
    Journal of the Geological Society of India, 2015, 85 : 98 - 106
  • [19] Forecasting Groundwater Level by Artificial Neural Networks as an Alternative Approach to Groundwater Modeling
    Chitsazan, Manouchehr
    Rahmani, Gholamreza
    Neyamadpour, Ahmad
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2015, 85 (01) : 98 - 106
  • [20] Assessment of artificial neural network models based on the simulation of groundwater contaminant transport
    Pal, Jayashree
    Chakrabarty, Dibakar
    HYDROGEOLOGY JOURNAL, 2020, 28 (06) : 2039 - 2055