The main purpose of this article is to apply feed forward back propagation neural network (FNN) to predict groundwater level of Aghili plain, which is located in southwestern Iran. An optimal design is completed for the two hidden layers with four different algorithms: descent with momentum (GDM), Levenberg Marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). The training data for ANN is obtained from observation data. Rain, evaporation, relative humidity, temperature, discharge of irrigation canal, and groundwater recharge from the plain boundary were used in input layer while future groundwater level was used as output layer. Before training, the available data were divided into three groups, according to hydrogeological characteristics of different parts of the plain surrounding each piezometer. Statistical analysis in terms of Mean-Square-Error (MSE) and correlation coefficient (R) was used to investigate the prediction performance of ANN. FFN-LM algorithm has shown best result in the present study for all three hydrogeological groups. Now, to predict water level, the t time data (October 2003 to July 2009) and t+1 time data (October 2004 to July 2010) were used as input and output respectively. The best condition of this network was achieved for each group of data. Next, with defining the new input data related to August 2010 to January 2011 groundwater level was predicted for the following year. The achieved results of ANN model in contrast with results of finite difference model showed very high accuracy of artificial neural network in predicting groundwater level.