Determination of ‘Hass’ avocado ripeness during storage by a smartphone camera using artificial neural network and support vector regression

被引:0
|
作者
Byeong-Hyo Cho
Kento Koyama
Shigenobu Koseki
机构
[1] Hokkaido University,Graduate School of Agricultural Science
关键词
Climacteric fruit; Color features; Firmness; Machine vision system;
D O I
暂无
中图分类号
学科分类号
摘要
Avocado undergoes quality transformation during storage, which needs to be managed in order to prevent quantity losses. A machine vision system devised with a smartphone camera was used to capture ‘Hass’ avocado images. Color features in L*a*b* and YUV (YUV color space is defined in terms of one luminance (Y) and two chrominance components (U and Y)) were extracted from the RGB images. Artificial Neural Network (ANN) and Support Vector Regression (SVR) were used compared for firmness estimation using the L*a*b* and YUV color features. The results indicated the ANN model is more accurate and robust than the SVR model for estimating ‘Hass’ avocado firmness with R2, RMSE, and RPD of 0.94, 0.38, 4.03 respectively for the model testing data set. It was concluded that the machine vision system devised with a smartphone camera and ANN model could be a low-cost tool for the determination of ripeness of ‘Hass’ avocado during harvest, storage, and distribution.
引用
收藏
页码:2021 / 2030
页数:9
相关论文
共 50 条
  • [11] Load forecasting using artificial neural networksand support vector regression
    De Rocco, Silvio Michel
    Aoki, Alexandre Rasi
    Lamar, Marcus Vinicius
    PROCEEDINGS OF THE 7TH WSES INTERNATIONAL CONFERENCE ON POWER SYSTEMS: NEW ADVANCES IN POWER SYSTEMS, 2007, : 36 - +
  • [12] Water Demand Prediction using Artificial Neural Networks and Support Vector Regression
    Msiza, Ishmael S.
    Nelwamondo, Fulufhelo V.
    Marwala, Tshilidzi
    JOURNAL OF COMPUTERS, 2008, 3 (11) : 1 - 8
  • [13] Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models
    Tabari, Mahmoud Mohammad Rezapour
    Sanayei, Hamed Reza Zarif
    SOFT COMPUTING, 2019, 23 (19) : 9629 - 9645
  • [14] Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models
    Mahmoud Mohammad Rezapour Tabari
    Hamed Reza Zarif Sanayei
    Soft Computing, 2019, 23 : 9629 - 9645
  • [15] Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
    Zhang, Di
    Lin, Junqiang
    Peng, Qidong
    Wang, Dongsheng
    Yang, Tiantian
    Sorooshian, Soroosh
    Liu, Xuefei
    Zhuang, Jiangbo
    JOURNAL OF HYDROLOGY, 2018, 565 : 720 - 736
  • [16] Crop Prediction Using Artificial Neural Network and Support Vector Machine
    Fegade, Tanuja K.
    Pawar, B. V.
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 2, 2020, 1016 : 311 - 324
  • [17] Artificial Neural Network and Support Vector Regression Modeling for Prediction of Mixing Time in Wet Granulation
    Boonyasith Chamnanthongpaivanh
    Jittima Chatchawalsaisin
    Oran Kittithreerapronchai
    Journal of Pharmaceutical Innovation, 2022, 17 : 1235 - 1246
  • [18] Artificial Neural Network and Support Vector Regression Modeling for Prediction of Mixing Time in Wet Granulation
    Chamnanthongpaivanh, Boonyasith
    Chatchawalsaisin, Jittima
    Kittithreerapronchai, Oran
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2022, 17 (04) : 1235 - 1246
  • [19] Electrical energy demand prediction using Artificial Neural Networks and Support Vector Regression
    Ruas, Gabriel I. S.
    Bragatto, Ticiano A. C.
    Lamar, Marcus V.
    Aoki, Alexandre R.
    de Rocco, Silvio M.
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 1431 - +
  • [20] Prediction of Moment Redistribution in Statically Indeterminate Reinforced Concrete Structures Using Artificial Neural Network and Support Vector Regression
    Li, Ling
    Zheng, Wenzhong
    Wang, Ying
    APPLIED SCIENCES-BASEL, 2019, 9 (01):