Load forecasting using artificial neural networksand support vector regression

被引:0
|
作者
De Rocco, Silvio Michel [1 ,3 ,4 ]
Aoki, Alexandre Rasi [2 ,4 ]
Lamar, Marcus Vinicius [3 ]
机构
[1] Univ Fed Parana, Dept Elect Engn, UFPR Polytech Ctr, POB 19011, BR-80060000 Curitiba, Parana, Brazil
[2] LACTEC, Inst Technol Dev, UFPR Polytech Ctr, BR-81531980 Curitiba, Brazil
[3] Parana Energy Co, BR-81200240 Curitiba, Parana, Brazil
[4] Brasilia Fed Univ, Dept Comp Sci, BR-70919970 Curitiba, Parana, Brazil
关键词
load forecasting; artificial neural networks; support vector regression;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a short term load forecasting system using two different techniques of Artificial Intelligence: Recurrent Artificial Neural Networks and Support Vector Regression. A brief analysis of the load over the distribution systems connection points in Brazilian Parana States is also done.
引用
收藏
页码:36 / +
页数:2
相关论文
共 50 条
  • [1] Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
    Hu, Zhongyi
    Bao, Yukun
    Xiong, Tao
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [2] Electric Load Forecasting using Support Vector Machines for Robust Regression
    De Cosmis, Sonia
    De Leone, Renato
    Kropat, Erik
    Meyer-Nieberg, Silja
    Pickl, Stefan
    EMERGING M&S APPLICATIONS IN INDUSTRY AND ACADEMIA SYMPOSIUM AND THE MODELING AND HUMANITIES SYMPOSIUM 2013 (EAIA AND MATH 2013) - 2013 SPRING SIMULATION MULTI-CONFERENCE (SPRINGSIM'13), 2013, 45 (05): : 72 - 79
  • [3] A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN)
    Abad
    Sarabia
    Yuzon
    Pacis
    2020 11TH IEEE CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2020, : 138 - 143
  • [4] Smart grid load forecasting using online support vector regression
    Vrablecova, Petra
    Ezzeddine, Anna Bou
    Rozinajova, Viera
    Sarik, Slavomir
    Sangaiah, Arun Kumar
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 65 : 102 - 117
  • [5] Peak Filectricity Load Forecasting Using Online Support Vector Regression
    Dhillon, Jagjeet
    Rahman, Shah Atiqur
    Ahmad, Sabbir U.
    Hossain, Jahangir
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [6] Short term load forecasting model using support vector machine based on artificial neural network
    Niu, DX
    Wang, Q
    Li, JC
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 4260 - 4265
  • [7] A quadratic ν-support vector regression approach for load forecasting
    Jia, Yanhe
    Zhou, Shuaiguang
    Wang, Yiwen
    Lin, Fengming
    Gao, Zheming
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [8] Day-Ahead Load Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark P.
    Polestico, Daisy Lou L.
    Abella, Dominique Michelle M.
    Alegata, Genesis T.
    Luna, Gabrielle C.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 22 - 27
  • [9] Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression
    Ghelardoni, Luca
    Ghio, Alessandro
    Anguita, Davide
    IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (01) : 549 - 556
  • [10] A Comparison of Artificial Neural Networks and Support Vector Machines for Short-term Load Forecasting using Various Load Types
    Mitchell, Glen
    Bahadoorsingh, Sanjay
    Ramsamooj, Neil
    Sharma, Chandrabhan
    2017 IEEE MANCHESTER POWERTECH, 2017,