Uniruledness of some low-dimensional ball quotients

被引:0
|
作者
Yota Maeda
机构
[1] Kyoto University,Department of Mathematics, Faculty of Science
[2] Sony Group Corporation,Advanced Research Laboratory, Technology Infrastructure Center, Technology Platform
来源
Geometriae Dedicata | 2024年 / 218卷
关键词
Ball quotients; Kodaira dimension; Birational types; Reflective modular forms; Hermitian forms; Primary 14G35; Secondary 11G18; 11E39;
D O I
暂无
中图分类号
学科分类号
摘要
We define reflective modular forms on complex balls and use a method of Gritsenko and Hulek to show that some ball quotients of dimensions 3, 4 and 5 are uniruled. We give examples of Hermitian lattices over the rings of integers of imaginary quadratic fields Q(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-1})$$\end{document} and Q(-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-2})$$\end{document} for which the associated ball quotients are uniruled. Our examples include the moduli space of 8 points on P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}. Moreover, we find that some of their Satake-Baily-Borel compactifications are rationally chain connected modulo certain cusps.
引用
收藏
相关论文
共 50 条