共 50 条
Uniruledness of some low-dimensional ball quotients
被引:0
|作者:
Yota Maeda
机构:
[1] Kyoto University,Department of Mathematics, Faculty of Science
[2] Sony Group Corporation,Advanced Research Laboratory, Technology Infrastructure Center, Technology Platform
来源:
Geometriae Dedicata
|
2024年
/
218卷
关键词:
Ball quotients;
Kodaira dimension;
Birational types;
Reflective modular forms;
Hermitian forms;
Primary 14G35;
Secondary 11G18;
11E39;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We define reflective modular forms on complex balls and use a method of Gritsenko and Hulek to show that some ball quotients of dimensions 3, 4 and 5 are uniruled. We give examples of Hermitian lattices over the rings of integers of imaginary quadratic fields Q(-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Q}}(\sqrt{-1})$$\end{document} and Q(-2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Q}}(\sqrt{-2})$$\end{document} for which the associated ball quotients are uniruled. Our examples include the moduli space of 8 points on P1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {P}}^1$$\end{document}. Moreover, we find that some of their Satake-Baily-Borel compactifications are rationally chain connected modulo certain cusps.
引用
收藏
相关论文