Uniruledness of some low-dimensional ball quotients

被引:0
|
作者
Yota Maeda
机构
[1] Kyoto University,Department of Mathematics, Faculty of Science
[2] Sony Group Corporation,Advanced Research Laboratory, Technology Infrastructure Center, Technology Platform
来源
Geometriae Dedicata | 2024年 / 218卷
关键词
Ball quotients; Kodaira dimension; Birational types; Reflective modular forms; Hermitian forms; Primary 14G35; Secondary 11G18; 11E39;
D O I
暂无
中图分类号
学科分类号
摘要
We define reflective modular forms on complex balls and use a method of Gritsenko and Hulek to show that some ball quotients of dimensions 3, 4 and 5 are uniruled. We give examples of Hermitian lattices over the rings of integers of imaginary quadratic fields Q(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-1})$$\end{document} and Q(-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-2})$$\end{document} for which the associated ball quotients are uniruled. Our examples include the moduli space of 8 points on P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}. Moreover, we find that some of their Satake-Baily-Borel compactifications are rationally chain connected modulo certain cusps.
引用
收藏
相关论文
共 50 条
  • [21] The dielectric function of some low-dimensional Si and Ge structures
    Polatoglou, HM
    Vlachoudis, V
    THIN SOLID FILMS, 1996, 276 (1-2) : 276 - 278
  • [22] Low-dimensional optics
    Flory, Franois
    Escoubas, Ludovic
    Le Rouzo, Judikael
    Berginc, Gerard
    Lee, Cheng-Chung
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [23] Low-dimensional perovskites
    Bubnova, Olga
    NATURE NANOTECHNOLOGY, 2018, 13 (07) : 531 - 531
  • [24] Low-dimensional BEC
    Sevilla, FJ
    Grether, M
    Fortes, M
    de Llano, M
    Rojo, O
    Solis, MA
    Valladares, AA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 281 - 286
  • [25] Low-dimensional BEC
    F. J. Sevilla
    M. Grether
    M. Fortes
    M. de Llano
    O. Rojo
    M. A. Solís
    A. A. Valladares
    Journal of Low Temperature Physics, 2000, 121 : 281 - 286
  • [26] Low-dimensional thermoelectrics
    Balandin, A
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 5-6 : U1 - U1
  • [27] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [28] Low-dimensional perovskites
    Olga Bubnova
    Nature Nanotechnology, 2018, 13 : 531 - 531
  • [29] LOW-DIMENSIONAL SOLIDS
    DAY, P
    CHEMISTRY IN BRITAIN, 1983, 19 (04) : 306 - &
  • [30] Low-dimensional thermoelectricity
    Heremans, JP
    ACTA PHYSICA POLONICA A, 2005, 108 (04) : 609 - 634