Uniruledness of some low-dimensional ball quotients

被引:0
|
作者
Yota Maeda
机构
[1] Kyoto University,Department of Mathematics, Faculty of Science
[2] Sony Group Corporation,Advanced Research Laboratory, Technology Infrastructure Center, Technology Platform
来源
Geometriae Dedicata | 2024年 / 218卷
关键词
Ball quotients; Kodaira dimension; Birational types; Reflective modular forms; Hermitian forms; Primary 14G35; Secondary 11G18; 11E39;
D O I
暂无
中图分类号
学科分类号
摘要
We define reflective modular forms on complex balls and use a method of Gritsenko and Hulek to show that some ball quotients of dimensions 3, 4 and 5 are uniruled. We give examples of Hermitian lattices over the rings of integers of imaginary quadratic fields Q(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-1})$$\end{document} and Q(-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{-2})$$\end{document} for which the associated ball quotients are uniruled. Our examples include the moduli space of 8 points on P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}. Moreover, we find that some of their Satake-Baily-Borel compactifications are rationally chain connected modulo certain cusps.
引用
收藏
相关论文
共 50 条
  • [1] Uniruledness of some low-dimensional ball quotients
    Maeda, Yota
    GEOMETRIAE DEDICATA, 2024, 218 (01)
  • [2] Efficient projection onto a low-dimensional ball
    Teal, Paul D.
    Krishnan, Lakshmi
    Betlehem, Terence
    ENGINEERING OPTIMIZATION, 2019, 51 (03) : 537 - 548
  • [3] EXTENSION THEOREMS FOR DIFFERENTIAL FORMS ON LOW-DIMENSIONAL GIT QUOTIENTS
    S. HEUVER
    Transformation Groups, 2020, 25 : 81 - 125
  • [4] EXTENSION THEOREMS FOR DIFFERENTIAL FORMS ON LOW-DIMENSIONAL GIT QUOTIENTS
    HEUVER, S.
    TRANSFORMATION GROUPS, 2020, 25 (01) : 81 - 125
  • [5] Statistics of some low-dimensional chaotic flows
    Dimitrova, ES
    Yordanov, OI
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (10): : 2675 - 2682
  • [6] On some (integrable) structures in low-dimensional holography
    Rashkov, R. C.
    NUCLEAR PHYSICS B, 2020, 951
  • [7] Some modifications of low-dimensional simplex evolution and their convergence
    Luo, Changtong
    Zhang, Shao-Liang
    Yu, Bo
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (01): : 54 - 81
  • [8] On the structure of low-dimensional Leibniz algebras: some revision
    Kurdachenko, L. A.
    Pypka, O. O.
    Subbotin, I. Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 34 (01): : 68 - 104
  • [9] Some permutation routing algorithms for low-dimensional hypercubes
    Hwang, FK
    Yao, YC
    Dasgupta, B
    THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) : 111 - 124
  • [10] On the algebra of derivations of some low-dimensional Leibniz algebras
    Kurdachenko, L. A.
    Semko, M. M.
    Subbotin, I. Ya.
    ALGEBRA AND DISCRETE MATHEMATICS, 2023, 36 (01): : 43 - 60