On the orbifold coverings associated to integral, ternary quadratic forms

被引:0
|
作者
José María Montesinos-Amilibia
机构
[1] Universidad Complutense,Facultad de Matematicas
关键词
Integral quadratic form; Knot; Link; Hyperbolic manifold; Volume; Automorph; Commensurability class; Integral equivalence; Rational equivalence; Projective equivalence; Bianchi equivalence; Conway’s excesses; -adic symbols; 11E04; 11E20; 57M25; 57M50; 57M60;
D O I
暂无
中图分类号
学科分类号
摘要
The group of (integral) automorphs of a ternary integral quadratic form f acts properly discontinuously as a group of isometries of the Riemann’s sphere (resp. the hyperbolic plane) if f is definite (resp. indefinite) and the quotient has a natural structure of spherical (resp. hyperbolic) orbifold, denoted by Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document}. Then fis aB-covering of the formg if Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document} is an orbifold covering of Qg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g}$$\end{document}, induced by T′fT=ρg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T^{\prime }fT=\rho g \end{aligned}$$\end{document}where T is an integral matrix and ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} is an integer. Given an integral ternary quadratic form f a number Πf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{f}$$\end{document}, called the B-invariant of the form f, is defined. It is conjectured that if f is a B-covering of the form g then both forms have the same B-invariant. The purpose of this paper is to reduce this conjecture to the case in which g is a form with square-free determinant. This reduction is based in the following main Theorem. Any definite (resp. indefinite) formfis aB-covering of a, unique up to genus (resp. integral equivalence), formgwith square-free determinant such thatfandghave the sameB-invariant. To prove this, a normal form of any definite (resp. indefinite) integral, ternary quadratic form f is introduced. Some examples and open questions are given.
引用
收藏
页码:717 / 749
页数:32
相关论文
共 50 条
  • [41] ON EXCEPTIONS OF INTEGRAL QUADRATIC-FORMS
    ODLYZKO, AM
    SLOANE, NJA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1981, 321 : 212 - 216
  • [42] Integral quadratic forms and Dirichlet series
    van Asch, B.
    van der Blij, F.
    RAMANUJAN JOURNAL, 2010, 22 (01): : 1 - 10
  • [43] Extensions of representations of integral quadratic forms
    Chan, Wai Kiu
    Kim, Byeong Moon
    Kim, Myung-Hwan
    Oh, Byeong-Kweon
    RAMANUJAN JOURNAL, 2008, 17 (01): : 145 - 153
  • [44] Integral quadratic forms and Dirichlet series
    B. van Asch
    F. van der Blij
    The Ramanujan Journal, 2010, 22 : 1 - 10
  • [45] EXCEPTIONS OF INTEGRAL QUADRATIC-FORMS
    PETERS, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 314 : 196 - 199
  • [46] Representation by integral quadratic forms - a survey
    Schulze-Pillot, R
    ALGEBRAIC AND ARITHMETIC THEORY OF QUADRATIC FORMS, PROCEEDINGS, 2004, 344 : 303 - 321
  • [47] On the Exceptional Sets of Integral Quadratic Forms
    Chan, Wai Kiu
    Oh, Byeong-Kweon
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (11) : 8347 - 8369
  • [48] Ternary quadratic forms and the class numbers of imaginary quadratic fields
    Gao, Lei
    Qin, Hourong
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4605 - 4640
  • [49] On ternary quadratic forms over the rational numbers
    Amir Jafari
    Farhood Rostamkhani
    Czechoslovak Mathematical Journal, 2022, 72 : 1105 - 1119
  • [50] Equidistribution of Heegner points and ternary quadratic forms
    Dimitar Jetchev
    Ben Kane
    Mathematische Annalen, 2011, 350 : 501 - 532