On the orbifold coverings associated to integral, ternary quadratic forms

被引:0
|
作者
José María Montesinos-Amilibia
机构
[1] Universidad Complutense,Facultad de Matematicas
关键词
Integral quadratic form; Knot; Link; Hyperbolic manifold; Volume; Automorph; Commensurability class; Integral equivalence; Rational equivalence; Projective equivalence; Bianchi equivalence; Conway’s excesses; -adic symbols; 11E04; 11E20; 57M25; 57M50; 57M60;
D O I
暂无
中图分类号
学科分类号
摘要
The group of (integral) automorphs of a ternary integral quadratic form f acts properly discontinuously as a group of isometries of the Riemann’s sphere (resp. the hyperbolic plane) if f is definite (resp. indefinite) and the quotient has a natural structure of spherical (resp. hyperbolic) orbifold, denoted by Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document}. Then fis aB-covering of the formg if Qf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{f}$$\end{document} is an orbifold covering of Qg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{g}$$\end{document}, induced by T′fT=ρg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T^{\prime }fT=\rho g \end{aligned}$$\end{document}where T is an integral matrix and ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} is an integer. Given an integral ternary quadratic form f a number Πf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi _{f}$$\end{document}, called the B-invariant of the form f, is defined. It is conjectured that if f is a B-covering of the form g then both forms have the same B-invariant. The purpose of this paper is to reduce this conjecture to the case in which g is a form with square-free determinant. This reduction is based in the following main Theorem. Any definite (resp. indefinite) formfis aB-covering of a, unique up to genus (resp. integral equivalence), formgwith square-free determinant such thatfandghave the sameB-invariant. To prove this, a normal form of any definite (resp. indefinite) integral, ternary quadratic form f is introduced. Some examples and open questions are given.
引用
收藏
页码:717 / 749
页数:32
相关论文
共 50 条
  • [31] ON SOLVABILITY OF TERNARY QUADRATIC-FORMS
    GUO, CR
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1995, 70 : 241 - 263
  • [32] Class numbers of ternary quadratic forms
    Chan, Wai Kiu
    Oh, Byeong-Kweon
    JOURNAL OF NUMBER THEORY, 2014, 135 : 221 - 261
  • [33] Representation of Integers by Ternary Quadratic Forms
    Li D.L.
    Zhao C.L.
    Acta Mathematica Sinica, 2001, 17 (4) : 715 - 720
  • [34] Ternary quadratic forms and Heegner divisors
    Du, Tuoping
    RAMANUJAN JOURNAL, 2016, 39 (01): : 61 - 82
  • [35] Regular positive ternary quadratic forms
    Oh, Byeong-Kweon
    ACTA ARITHMETICA, 2011, 147 (03) : 233 - 243
  • [36] Fast reduction of ternary quadratic forms
    Eisenbrand, F
    Rote, G
    CRYPTOGRAPHY AND LATTICES, 2001, 2146 : 32 - 44
  • [37] Euclidean quadratic forms and ADC forms II: integral forms
    Clark, Pete L.
    Jagy, William C.
    ACTA ARITHMETICA, 2014, 164 (03) : 265 - 308
  • [38] Integral matrices as diagonal quadratic forms
    Lee, Jungin
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 742 - 747
  • [39] LEAST DETERMINANTS OF INTEGRAL QUADRATIC FORMS
    OPPENHEIM, A
    DUKE MATHEMATICAL JOURNAL, 1953, 20 (03) : 391 - 393
  • [40] Extensions of representations of integral quadratic forms
    Wai Kiu Chan
    Byeong Moon Kim
    Myung-Hwan Kim
    Byeong-Kweon Oh
    The Ramanujan Journal, 2008, 17 : 145 - 153