We consider a measure-valued diffusion (i.e., a superprocess). It is determined by a couple (L,ψ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(L,\psi )$$\end{document}, where L is the infinitesimal generator of a strongly recurrent diffusion in Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^{d}$$\end{document} and ψ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi $$\end{document} is a branching mechanism assumed to be supercritical. Such processes are known, see for example, (Englander and Winter in Ann Inst Henri Poincaré 42(2):171–185, 2006), to fulfill a law of large numbers for the spatial distribution of the mass. In this paper, we prove the corresponding central limit theorem. The limit and the CLT normalization fall into three qualitatively different classes arising from “competition” of the local growth induced by branching and global smoothing due to the strong recurrence of L. We also prove that the spatial fluctuations are asymptotically independent of the fluctuations of the total mass of the process.
机构:
Amer Univ Beirut, Dept Math, Fac Arts & Sci, POB 11-0236 Riad El Solh, Beirut 11072020, LebanonAmer Univ Beirut, Dept Math, Fac Arts & Sci, POB 11-0236 Riad El Solh, Beirut 11072020, Lebanon
机构:
Univ Elect Sci & Technol China, Sch Math, Chengdu 611731, Sichuan, Peoples R China
City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math, Chengdu 611731, Sichuan, Peoples R China
Wu, Xinxing
Chen, Guanrong
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math, Chengdu 611731, Sichuan, Peoples R China