Spatial Central Limit Theorem for Supercritical Superprocesses

被引:0
|
作者
Piotr Miłoś
机构
来源
关键词
Branching processes; Supercritical branching processes; Limit behavior; Central limit theorem; Primary 60F05; 60J80; Secondary 60G20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a measure-valued diffusion (i.e., a superprocess). It is determined by a couple (L,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L,\psi )$$\end{document}, where L is the infinitesimal generator of a strongly recurrent diffusion in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{d}$$\end{document} and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a branching mechanism assumed to be supercritical. Such processes are known, see for example, (Englander and Winter in Ann Inst Henri Poincaré 42(2):171–185, 2006), to fulfill a law of large numbers for the spatial distribution of the mass. In this paper, we prove the corresponding central limit theorem. The limit and the CLT normalization fall into three qualitatively different classes arising from “competition” of the local growth induced by branching and global smoothing due to the strong recurrence of L. We also prove that the spatial fluctuations are asymptotically independent of the fluctuations of the total mass of the process.
引用
收藏
页码:1 / 40
页数:39
相关论文
共 50 条
  • [21] A central limit theorem for endogenous locations and complex spatial interactions
    Pinkse, Joris
    Shen, Lihong
    Slade, Margaret
    JOURNAL OF ECONOMETRICS, 2007, 140 (01) : 215 - 225
  • [22] On the Central Limit Theorem
    Bergstroem, Harald
    SKANDINAVISK AKTUARIETIDSKRIFT, 1944, 27 (3-4): : 139 - 153
  • [23] A central limit theorem for the spatial Λ-Fleming-Viot process with selection
    Forien, Raphael
    Penington, Sarah
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [24] Central Limit Theorem and Convergence Rates for a Supercritical Branching Process with Immigration in a Random Environment
    Yingqiu Li
    Xulan Huang
    Zhaohui Peng
    Acta Mathematica Scientia, 2022, 42 : 957 - 974
  • [25] CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT
    李应求
    黄绪兰
    彭朝晖
    Acta Mathematica Scientia, 2022, 42 (03) : 957 - 974
  • [26] THE CENTRAL-LIMIT-THEOREM FOR THE SUPERCRITICAL BRANCHING RANDOM-WALK, AND RELATED RESULTS
    BIGGINS, JD
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1990, 34 (02) : 255 - 274
  • [27] CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT
    Li, Yingqiu
    Huang, Xulan
    Peng, Zhaohui
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 957 - 974
  • [28] CENTRAL LIMIT THEOREM FOR SUPERCRITICAL BINARY HOMOGENEOUS CRUMP-MODE-JAGERS PROCESSES
    Henry, Benoit
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 113 - 137
  • [29] The prolific backbone for supercritical superprocesses
    Berestycki, J.
    Kyprianou, A. E.
    Murillo-Salas, A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (06) : 1315 - 1331
  • [30] The central limit theorem and chaos
    NIU Ying-xuan Department of Mathematics and Physics
    Applied Mathematics:A Journal of Chinese Universities, 2009, (02) : 230 - 236